20 resultados para chalcopyrite leaching

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the performance of fiber-cement corrugated sheets exposed to long-term weathering, exploring the effect of different environments on fiber-cement degradation. Fiber-cement corrugated sheets that had been exposed to weathering, and in place for more than 30-years, were collected from two different Brazilian cities (Sao Paulo and Criciuma). Mechanical properties (MOR, MOE and fracture toughness) were tested on samples removed from the corrugated sheets. Microstructure was evaluated by X-ray diffraction, SEM with EDS analysis, MIP and TG. The results show that the 37-year-old asbestos-cement corrugated sheets from Sao Paulo presented similar characteristics to those of the non-aged asbestos-cement readily available on the market place. Conversely, deterioration of the asbestos-cement from the industrial area of Criciuma is related to acidic attack, along with carbonation and leaching as a consequence of continued exposition to acid rain during several decades. This process resulted in higher porosity and lower mechanical strength, revealing that leaching mechanisms can have important effect on the performance of thin fiber-cement sheets. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9 m, in an Ultisol in Sao Paulo State (Brazil) with high permeability, Cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120 log ha(-1) of N-urea. In order to find out the fate of N-fertilizer, four microplots with (15)N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9 m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205 mm of water, with a total loss of 18 kg ha(-1) of N and 10 kg ha(-1) of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25 g ha(-1) of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The total protein content and activity of the enzymes glutathione reductase (GR), superoxide dismutase (SOD) and thioredoxin reductase (TrxR) were evaluated in Acidithiobacillus ferrooxidans LR cells maintained in contact with the metal sulfide chalcopyrite for 1 and 10 days. A significant decrease in total protein content was observed in cells maintained for 10 days in the presence of chalcopyrite, suggesting proteolytic breakdown clue to exposure to the metal sulfide. Following 10 clays of contact with chalcopyrite, increases in GR, SOD and TrxR activities were detected, suggesting the formation of reactive oxygen species. After ten clays, there was a fivefold increase in GR activity, of which, isoenzyme IV represented approximately 82% of the total. An increase in Fe-SOD activity following ten days exposure to chalcopyrite was also determined, as measured on non-denaturing polyacrylamide gels. Also, after 10 days. an approximately 31-fold increase was observed for TrxR activity. The presence of oxidative stress when A. ferrooxidans is in the presence of chalcopyrite could have a negative impact on bioleaching. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM), particle size analysis by laser diffraction (LPSA) and thermal analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resuspended soil and other airborne particles adhered to the leaf surface affect the chemical composition of the plant. A well-defined cleaning procedure is necessary to avoid this problem, providing a correct assessment of the inherent chemical composition of bromeliads. To evaluate the influence of a washing procedure, INAA was applied for determining chemical elements in the leaves of bromeliads from Vriesea carinata species, both non-washed and washed with Alconox, EDTA and bi-distilled water. Br, Ce, Hg, La, Sc, Se, Sm and Th showed higher mass fractions in non-washed leaves. The washing procedure removed the exogenous material without leaching chemical elements from inside the tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of Pigment Volume Content (PVC) on fungal growth on acrylic paint formulations with and without biocide, exposed to weathering in three different climatic regions in Brazil for four years, was studied Latex paints. with PVC of 30%, 35% and 50%, were applied to autoclaved aerated concrete blocks pre-covered with acrylic sealer and acrylic plaster They were exposed to equatorial, tropical and temperate climates in north, south-east, and south Brazil Cladosporium was the most abundant fungal genus detected in the biofilm on the surfaces of all paint formulations at all sites after four years Heaviest fungal colonization occurred in the tropical south-east and lightest in the temperate south of the country, but more phototrophs, principally cyanobacteria, were detected in the equatorial region PVC and presence of biocides were shown to be of less importance than environmental conditions (irradiance, humidity and temperature) for biofilm formation and consequent discolouration These results have important implications for testing of paint formulations (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric arc furnace steel dust is a by-product of the steelmaking process and contains high amounts of the iron and zinc and significant amounts of lead, chromium, and cadmium. Metal recycling however, is not always economically feasible, especially due to the complex mineralogical composition of this material. In this study an application of this material is presented. Ceramics were produced with clay and variable amounts of steel dust. The bulk material was fired between 800 and 1100 degrees C. The influence of the composition and the processing temperature on the mechanical strength, linear shrinkage, water absorption, apparent density and bending strength and metal leaching of the ceramic samples was investigated. A blend of clay with up to 20% dust yielded ceramics with limited metal contamination risk and may thus be used for structural ceramics production. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcium carbonate industry generates solid waste products which, because of their high alkaline content (CaO, CaCO(3) and Ca (OH)(2)), have a substantial impact on the environment. The objectives of this study are to characterize and classify the solid waste products, which are generated during the hydration process of the calcium carbonate industry, according to ABNT`s NBR 10.000 series, and to determine the potential and efficiency of using these solid residues to correct soil acidity. Initially, the studied residue was submitted to gross mass, leaching, solubility, pH. X-ray Diffractometry, Inductive Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), granularity and humidity analyses. The potential and efficiency of the residue for correcting soil acidity was determined by analysis of the quality attributes for soil correctives (PN, PRNT, Ca and Mg contents, granularity). Consequently, the results show that the studied residue may be used as a soil acidity corrective, considering that a typical corrective compound is recommended for each different type of soil. Additionally, the product must be further treated (dried and ground) to suit the specific requirements of the consumer market.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of electronic equipment, such as computers and cell phones, and, consequently, batteries, has increased dramatically. One of the types of batteries whose production and consumption has increased in recent times is the nickel metal hydride (NiMH) battery. This study evaluated a hydrometallurgical method of recovery of rare earths and a simple method to obtain a solution rich in Ni-Co from spent NiMH batteries. The active materials from both electrodes were manually removed from the accumulators and leached. Several acid and basic solutions for the recovery of rare earths were evaluated. Results showed that more than 98 wt.% of the rare earths were recovered as sulfate salts by dissolution with sulfuric acid, followed by selective precipitation at pH 1.2 using sodium hydroxide. The complete process. precipitation at pH 1.2 followed by precipitation at pH 7, removed about 100 wt.% of iron and 70 wt.% of zinc from the leaching solution. Results were similar to those found in studies that used solvent extraction. This method is easy, economic, and does not pose environmental threats of solvent extraction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Florida Spodosols axe sandy, inherently low in Fe- and Al-based minerals, and sorb phosphorus (P) poorly. We evaluated runoff and leachate P losses from a typical Florida Spodosol amended with biosolids and triple superphosphate (TSP). Phosphorus losses were evaluated with traditional indoor rainfall simulations but used a double-deck box arrangement that allowed leaching and runoff to be determined simultaneously. Biosolids (Lakeland, OCUD, Milorganite, and Disney) represented contrasting values of total P, percent water-extractable p (PWEP), and percentage of solids. All P sources were surface applied at 224 kg P ha(-1), representing a soil P rate typical of N-based biosolids application. All biosolids-P sources lost less P than TSp, and leachate-P losses generally dominated. For Lakeland-amended I soil, bioavailable P (BAP) was mainly lost by runoff (81% of total BAP losses). This behavior was due to surface scaling and 1 drying after application of the slurry (31 g kg(-1) solids), material. For all other P sources, BAP losses in leachate were much,greater than in runoff, representing 94% of total BAP losses for TSP, 80% for Milorganite, 72% for Disney, and 69% for OCUD treatments. Phosphorus leaching can be extreme and represents a great concern in many coarse-textured Florida Spodosols, and other coastal plain soils with low P-sorption,capacities. The PWEP values of P sources were significantly correlared with total P and BAP losses in runoff and leachate. The PWEP of a source can serve as a good indicator of potential P loss when amended to sandy soils with low P-retention capacities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the chemical and physical properties of cashew nut shell ash for use in cement materials. Ash occupies a prominent place among agro-industrial wastes, as it is derived from energy generation processes. Several types of ash have pozzolanic reactivity, and might be used as replacement material for cement, resulting in less energy waste and lower cost. This work aimed to investigate the physical and chemical properties of the cashew nut shell ash (CNSA), by performing the following measurement tests: chemical analysis, bulk density, specific mass, leaching and solubilization process, X-ray diffraction (XrD), specific surface area (BET) and pozzolanicity analysis with cement and lime. The results indicate a low reactivity of CNSA and the presence of heavy metals, alkalis and phenol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work evaluated the effects of accelerated carbonation on mechanical and physical characteristics of cementitious roofing tiles reinforced with vegetable fibre. The maximum load and toughness of the tiles have increased approximately 25% and 80% respectively as a consequence of the accelerated carbonation. Water absorption and apparent porosity decreased with carbonation while bulk density increased as a clear indication of the densification of the composite. The improvement on the mechanical performance suggests that the fibres retained their tensile strength in the inorganic matrix. Results of specimens extracted from the tested tiles after approximately 480 days in laboratory environment and further aged indicate that soak and dry cycles promoted some leaching of hydration products and more voids and lower density when performed before carbonation. The results indicate the utilization of accelerated carbonation as an effective procedure to mitigate the degradation suffered by the cellulose fibres in the less aggressive medium. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions. (c) 2009 Elsevier B.V. All rights reserved.