13 resultados para catalog
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A detailed study was performed for a sample of low-mass pre-main-sequence (PMS) stars, previously identified as weak-line T Tauri stars, which are compared to members of the Tucanae and Horologium Associations. Aiming to verify if there is any pattern of abundances when comparing the young stars at different phases, we selected objects in the range from 1 to 100 Myr, which covers most of PMS evolution. High-resolution optical spectra were acquired at European Southern Observatory and Observatorio do Pico dos Dias. The stellar fundamental parameters effective temperature and gravity were calculated by excitation and ionization equilibria of iron absorption lines. Chemical abundances were obtained via equivalent width calculations and spectral synthesis for 44 per cent of the sample, which shows metallicities within 0.5 dex solar. A classification was developed based on equivalent width of Li I 6708 angstrom and Ha lines and spectral types of the studied stars. This classification allowed a separation of the sample into categories that correspond to different evolutive stages in the PMS. The position of these stars in the Hertzsprung-Russell diagram was also inspected in order to estimate their ages and masses. Among the studied objects, it was verified that our sample actually contains seven weak-line T Tauri stars, three are Classical T Tauri, 12 are Fe/Ge PMS stars and 21 are post-T Tauri or young main-sequence stars. An estimation of circumstellar luminosity was obtained using a disc model to reproduce the observed spectral energy distribution. Most of the stars show low levels of circumstellar emission, corresponding to less than 30 per cent of the total emission.
Resumo:
A new method to measure the epicycle frequency kappa in the Galactic disc is presented. We make use of the large data base on open clusters completed by our group to derive the observed velocity vector (amplitude and direction) of the clusters in the Galactic plane. In the epicycle approximation, this velocity is equal to the circular velocity given by the rotation curve, plus a residual or perturbation velocity, of which the direction rotates as a function of time with the frequency kappa. Due to the non-random direction of the perturbation velocity at the birth time of the clusters, a plot of the present-day direction angle of this velocity as a function of the age of the clusters reveals systematic trends from which the epicycle frequency can be obtained. Our analysis considers that the Galactic potential is mainly axis-symmetric, or in other words, that the effect of the spiral arms on the Galactic orbits is small; in this sense, our results do not depend on any specific model of the spiral structure. The values of kappa that we obtain provide constraints on the rotation velocity of the in particular, V(0) is found to be 230 +/- 15 km s(-1) even if the scale (R(0) = 7.5 kpc) of the Galaxy is adopted. The measured kappa at the solar radius is 43 +/- 5 km s(-1) kpc(-1). The distribution of initial velocities of open clusters is discussed.
Resumo:
NGC 6908, an S0 galaxy situated in the direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21-cm radio synthesis observations obtained with the Giant Metrewave Radio Telescope (GMRT) and optical images and spectroscopy obtained with the Gemini-North telescope of this pair of interacting galaxies. From the radio observations, we obtained the velocity field and the H I column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high-quality photometric images and 5 angstrom resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s(-1). The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some emission lines are superimposed on a broader absorption profile, which suggests that they were not formed in NGC 6908. Finally, the H I profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disc and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4 +/- 0.6) x 10(7) yr ago.
Resumo:
We present a catalogue of galaxy photometric redshifts and k-corrections for the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7), available on the World Wide Web. The photometric redshifts were estimated with an artificial neural network using five ugriz bands, concentration indices and Petrosian radii in the g and r bands. We have explored our redshift estimates with different training sets, thus concluding that the best choice for improving redshift accuracy comprises the main galaxy sample (MGS), the luminous red galaxies and the galaxies of active galactic nuclei covering the redshift range 0 < z < 0.3. For the MGS, the photometric redshift estimates agree with the spectroscopic values within rms = 0.0227. The distribution of photometric redshifts derived in the range 0 < z(phot) < 0.6 agrees well with the model predictions. k-corrections were derived by calibration of the k-correct_v4.2 code results for the MGS with the reference-frame (z = 0.1) (g - r) colours. We adopt a linear dependence of k-corrections on redshift and (g - r) colours that provide suitable distributions of luminosity and colours for galaxies up to redshift z(phot) = 0.6 comparable to the results in the literature. Thus, our k-correction estimate procedure is a powerful, low computational time algorithm capable of reproducing suitable results that can be used for testing galaxy properties at intermediate redshifts using the large SDSS data base.
Resumo:
We studied superclusters of galaxies in a volume-limited sample extracted from the Sloan Digital Sky Survey Data Release 7 and from mock catalogues based on a semi-analytical model of galaxy evolution in the Millennium Simulation. A density field method was applied to a sample of galaxies brighter than M(r) = -21+5 log h(100) to identify superclusters, taking into account selection and boundary effects. In order to evaluate the influence of the threshold density, we have chosen two thresholds: the first maximizes the number of objects (D1) and the second constrains the maximum supercluster size to similar to 120 h(-1) Mpc (D2). We have performed a morphological analysis, using Minkowski Functionals, based on a parameter, which increases monotonically from filaments to pancakes. An anticorrelation was found between supercluster richness (and total luminosity or size) and the morphological parameter, indicating that filamentary structures tend to be richer, larger and more luminous than pancakes in both observed and mock catalogues. We have also used the mock samples to compare supercluster morphologies identified in position and velocity spaces, concluding that our morphological classification is not biased by the peculiar velocities. Monte Carlo simulations designed to investigate the reliability of our results with respect to random fluctuations show that these results are robust. Our analysis indicates that filaments and pancakes present different luminosity and size distributions.
Resumo:
We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 h of observations with the 4-m VISTA telescope during 5 years (2010-2014), covering similar to 10(9) point sources across an area of 520 deg(2), including 33 known globular clusters and similar to 350 open clusters. The final product will be a deep near-IR atlas in five passbands (0.9-2.5 mu m) and a catalogue of more than 106 variable point sources. Unlike single-epoch surveys that, in most cases, only produce 2-D maps, the VVV variable star survey will enable the construction of a 3-D map of the surveyed region using well-understood distance indicators such as RR Lyrae stars, and Cepheids. It will yield important information on the ages of the populations. The observations will be combined with data from MACHO, OGLE, EROS, VST, Spitzer, HST, Chandra, INTEGRAL, WISE, Fermi LAT, XMM-Newton, GAIA and ALMA for a complete understanding of the variable sources in the inner Milky Way. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its globular cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star forming regions in the disk. The combined variable star catalogues will have important implications for theoretical investigations of pulsation properties of stars. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
With Two-Micron All-Sky Survey (2MASS) photometry and proper motions, Bonatto et al. suggested that FSR 1767 is a globular cluster (GC), while with J and K NTT/SOFI photometry Froebrich, Meusinger & Scholz concluded that it is not a star cluster. In this study, we combine previous and new evidence that are consistent with a GC. For instance, we show that the horizontal branch (HB) and red giant branch (RGB) stars, besides sharing a common proper motion, have radial density profiles that consistently follow the King`s law independently. Reddening maps around FSR 1767 are built using the bulge RGB as reference and also Schlegel`s extinction values to study local absorptions. Both approaches provide similar maps and show that FSR 1767 is not located in a dust window, which otherwise might have produced the stellar overdensity. Besides, neighbouring regions of similar reddening as FSR 1767 do not present the blue HB stars that are a conspicuous feature in the colour-magnitude diagram of FSR 1767. We report the presence of a compact group of stars located in the central parts of FSR 1767. It appears to be a detached post-collapse core, similar to those of other nearby low-luminosity GCs projected towards the bulge. We note that while the NTT/SOFI photometry of the star cluster FSR 1716 matches perfectly that from 2MASS, it shows a considerable offset for FSR 1767. We discuss the possible reasons why both photometries differ. We confirm our previous structural and photometric fundamental parameters for FSR 1767, which are consistent with a GC.
Resumo:
We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10(13.5) solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ACDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity > 80% for the redshift range up to similar to 1 and mass range down to similar to 10(13.5) solar masses.
Resumo:
The highest energy cosmic ray event reported by the Auger Observatory has an energy of 148 EeV. It does not correlate with any nearby (z<0.024) object capable of originating such a high energy event. Intrigued by the fact that the highest energy event ever recorded (by the Fly`s Eye collaboration) points to a faraway quasar with very high radio luminosity and large Faraday rotation measurement, we have searched for a similar source for the Auger event. We find that the Auger highest energy event points to a quasar with similar characteristics to the one correlated to the Fly`s Eye event. We also find the same kind of correlation for one of the highest energy AGASA events. We conclude that so far these types of quasars are the best source candidates for both Auger and Fly`s Eye highest energy events. We discuss a few exotic candidates that could reach us from gigaparsec distances.
Resumo:
Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than similar to 6 x 10(19) eV and AGN at a distance less than similar to 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuz`min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The region of Toledo River, Parana, Brazil is characterized by intense anthropogenic activities. Hence, metal concentrations and physical-chemical parameters of Toledo River water were determined in order to complete an environmental evaluation catalog. Samples were collected monthly during one year period at seven different sites from the source down the river mouth, physical-chemical variables were analyzed, and major metallic ions were measured. Metal analysis was performed by using the synchrotron radiation total reflection X-ray fluorescence technique. A statistical analysis was applied to evaluate the reliability of experimental data. The analysis of obtained results have shown that a strong correlation between physical-chemical parameters existed among sites 1 and 7, suggesting that organic pollutants were mainly responsible for decreasing the Toledo River water quality.
Resumo:
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz`min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The prefrontal cortex executes important functions such as differentiation of conflicting thoughts, correct social behavior and personality expression, and is directly implicated in different neurodegenerative diseases. We performed a shotgun proteome analysis that included IEF fractionation, RP-LC, and MALDI-TOF/TOF mass spectrometric analysis of tryptic digests from a pool of seven human dorsolateral prefrontal cortex protein extracts. In this report, we present a catalog of 387 proteins expressed in these samples, identified by two or more peptides and high confidence search scores. These proteins are involved in different biological processes such as cell growth and/or maintenance, metabolism/energy pathways, cell communication/signal trarisduction, protein metabolism, transport, regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, and immune response. This analysis contributes to the knowledge of the human brain proteome by adding sample diversity and protein expression data from an alternative technical approach. It will also aid comparative studies of different brain areas and medical conditions, with future applications in basic and clinical research.