9 resultados para bucky-paper
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigniventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P.l. lanio venom (1 nmol of histamine/7 mu g of venom)that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The growth of molds on paper containing cellulose is a frequent occurrence when the level of relative air humidity is high or when books become wet due to water leaks in libraries. The aim of this study is to differentiate the bioreceptivity of different types of book paper for different fungi. Laboratory tests were performed with strains of Aspergillus niger, Cladosporium sp., Chaetomium globosum and Trichoderma harzianum isolated from books. Four paper types were evaluated: couche Men (offset), recycled and a reference paper containing only cellulose. The tests were carried out in chambers with relative air humidity of 95% and 100%. Mold growth was greatest in the tests at 100% relative humidity. Results of stereoscopic microscopy observation showed that Cladosporium sp. grew in 74% of these samples, A. niger in 75%, T. harzianum in 72% and C. globosum in 60%. In the chambers with 95% air humidity Cladosporium sp. grew in only 9% of the samples, A. niger in 1%, T harzianum in 3% and C globosum did not grow in any sample. The most bioreceptive paper was couche and the least receptive was recycled paper. The composition of the recycled paper, however, varies depending on the types of waste materials used to make it. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.
Resumo:
It is very common in mathematics to construct surfaces by identifying the sides of a polygon together in pairs: For example, identifying opposite sides of a square yields a torus. In this article the construction is considered in the case where infinitely many pairs of segments around the boundary of the polygon are identified. The topological, metric, and complex structures of the resulting surfaces are discussed: In particular, a condition is given under which the surface has a global complex structure (i.e., is a Riemann surface). In this case, a modulus of continuity for a uniformizing map is given. The motivation for considering this construction comes from dynamical systems theory: If the modulus of continuity is uniform across a family of such constructions, each with an iteration defined on it, then it is possible to take limits in the family and hence to complete it. Such an application is briefly discussed.
Resumo:
This article describes a prototype system for quantifying bioassays and for exchanging the results of the assays digitally with physicians located off-site. The system uses paper-based microfluidic devices for running multiple assays simultaneously, camera phones or portable scanners for digitizing the intensity of color associated with each colorimetric assay, and established communications infrastructure for transferring the digital information from the assay site to an off-site laboratory for analysis by a trained medical professional; the diagnosis then can be returned directly to the healthcare provider in the field. The microfluidic devices were fabricated in paper using photolithography and were functionalized with reagents for colorimetric assays. The results of the assays were quantified by comparing the intensities of the color developed in each assay with those of calibration curves. An example of this system quantified clinically relevant concentrations of glucose and protein in artificial urine. The combination of patterned paper, a portable method for obtaining digital images, and a method for exchanging results of the assays with off-site diagnosticians offers new opportunities for inexpensive monitoring of health, especially in situations that require physicians to travel to patients (e.g., in the developing world, in emergency management, and during field operations by the military) to obtain diagnostic information that might be obtained more effectively by less valuable personnel.
Resumo:
Microfluidic paper-based analytical devices (mu PADs) are a new class of point-of-care diagnostic devices that are inexpensive, easy to use, and designed specifically for use in developing countries. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.)
Resumo:
Bill & Melinda Gates Foundation[51308]
Resumo:
This technical note describes a detailed study on wax printing, a simple and inexpensive method for fabricating microfluidic devices in paper using a commercially available printer and hot plate. The printer prints patterns of solid wax on the surface of the paper, and the hot plate melts the wax so that it penetrates the full thickness of the paper. This process creates complete hydrophobic barriers in paper that define hydrophilic channels, fluid reservoirs, and reaction zones. The design of each device was based on a simple equation that accounts for the spreading of molten wax in paper.
Resumo:
This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multi-well plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (similar to 180 mu m), require small volumes of sample (5 mu L per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (similar to 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was aproximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.