33 resultados para bola-surfactant
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to evaluate the incorporation of hydrophobic plasticizers (acetyltributyl citrate - ATB, tributyl citrate - TB and acetyltriethyl citrate - ATC) in a matrix of gelatin, using the saponin extracted from Yucca schidigera (yucca) as emulsifier, in the production of biodegradable emulsified films using the casting technique. High levels of hydrophobic plasticizers were incorporated, reaching up to 75% of plasticizer in relation to the protein (w/w) for ATB and TB, and up to 60% for ATC. The minimum values of water vapor permeability were 0.08, 0.07 and 0.06 g mm m(-2) h(-1) kPa(-1) for ATB, TB and ATC respectively, with no significant differences (p > 0.05). The water solubility of the films ranged from 21% to 59.5%. Although the WVP decreased, both scanning electron microscopy and laser scanning confocal microscopy indicated that the incorporation of the hydrophobic plasticizers did not occur homogeneously in the film matrix. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Respiratory syncytial virus (RSV) bronchiolitis is the leading cause of lower respiratory tract infection, and the most frequent reason for hospitalization among infants throughout the world. In addition to the acute consequences of the disease, RSV bronchiolitis in early childhood is related to further development of recurrent wheezing and asthma. Despite the medical and economic burden of the disease, therapeutic options are limited to supportive measures, and mechanical ventilation in severe cases. Growing evidence suggests an important role of changes in pulmonary surfactant content and composition in the pathogenesis of severe RSV bronchiolitis. Besides the well-known importance of pulmonary surfactant in maintenance of pulmonary homeostasis and lung mechanics, the surfactant proteins SP-A and SP-D are essential components of the pulmonary innate immune system. Deficiencies of such proteins, which develop in severe RSV bronchiolitis, may be related to impairment in viral clearance, and exacerbated inflammatory response. A comprehensive understanding of the role of the pulmonary surfactant in the pathogenesis of the disease may help the development of new treatment strategies. We conducted a review of the literature to analyze the evidences of pulmonary surfactant changes in the pathogenesis of severe RSV bronchiolitis, its relation to the inflammatory and immune response, and the possible role of pulmonary surfactant replacement in the treatment of the disease. Pediatr Pulmonol. 2011; 46:415-420. (c) 2010 Wiley-Liss, Inc.
Resumo:
Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen`s secondary structure is affected by all three studied surfactants (decrease in alpha-helix and an increase in beta-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. (C) 2011 Elsevier Inc. All rights reserved.
Surfactant-nanotube interactions in water and nanotube separation by diameter: atomistic simulations
Resumo:
A non-destructive sorting method to separate single-walled carbon nanotubes (SWNTs) by diameter was recently proposed. By this method, SWNTs are suspended in water by surfactant encapsulation and the separation is carried out by ultracentrifugation in a density gradient. SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic surfactants, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. Unexpectedly, small diameter nanotubes are found at the low density part of the centrifuge tube. We present molecular dynamics studies of the water-surfactant-SWNT system to investigate the role of surfactants in the sorting process. We found that surfactants can actually be attracted towards the interior of the nanotube cage, depending on the relationship between the surfactant radius of gyration and the nanotube diameter. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Resumo:
The rates of oximolysis of p-nitrophenyl diphenyl phosphate (PNPDPP) by Acetophenoxime; 10-phenyl-10-hydi-oxyiminodecanoic acid; 4-(9-carboxynonanyl)-1-(9-carboxy-1-hydroyiminononanyl) benzene; 1-dodecyl-2-[(hydroxyimino)methyl]-pyridinium chloride (IV) and N-methylpyridinium-2-aldoxime chloride were determined in micelles of N-hexadecyl-N,N,N-trimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethylammonium propanesulfonate and dioctadecyldimethylammonium chloride (DODAC) vesicles. The effects of CTAC micelles and DODAC vesicles on the rates of oxymolysis of O,O-Diethyl O-(4-nitrophenyl) phosphate (paraoxon) by oxime IV were also determined. Analysis of micellar and vesicular effects on oximolysis of PNPDPP, using pseudophase or pseudophase with explicit consideration of ion exchange models, required the determination of the aggregate`s effects on the pK(a), of oximes and on the rates of PNPDPP hydrolysis. All aggregates increased the rate of oximolysis of PNPDPP and the results were analyzed quantitatively. In particular, DODAC vesicles catalyzed the reaction and increased the rate of oximolysis of PNPDPP by IV several million fold at pH`s compatible with pharmaceutical formulations. The rate increase produced by DODAC vesicles on the rate of oximolysis paraoxon by IV demonstrates the pharmaceutical potential of this system, since the substrate is used as an agricultural defensive agent and the surfactant is extensively employed in cosmetic formulations. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1040-1052, 2009
Resumo:
The addition of 0.5 mM catechol is shown to accelerate the degradation and mineralization of the anionic surfactant DOWFaX (TM) 2A1 (sodium dodecyldiphenyloxide disulfonate) under conventional Fenton reaction conditions (Fe(II) plus H(2)O(2) at pH 3). The catalytic effect causes a 3-fold increase in the initial rate (up to ca. 20 min) of conversion of the surfactant to oxidation products (apparent first-order rate constants of 0.021 and 0.061 min(-1) in the absence and presence of catechol, respectively). Although this catalytic rate increase persists for a certain amount of time after complete disappearance of catechol itself (ca. 8 min), the reaction rate begins to decline slowly after the initial 20 min towards that observed in the absence of added catechol. Total organic carbon (TOC) measurements of net mineralization and cyclic voltammetric and high performance liquid chromatographic (HPLC) measurements of the initial rate of reaction of catechol and the surfactant provide insight into the role of catechol in promoting the degradation of the surfactant and of degradation products as the eventual inhibitors of the Fenton reaction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Microelectrode cyclic voltammetry (MV) has been employed to investigate the micellar properties of solutions of homologous alkyltrimethylammonium bromides, RMe(3)ABr, R = C(10), C(12), and C(14), in water and in the presence of added NaBr. The micellar self-diffusion coefficient was calculated from the limiting current for the reversible electron transfer of micelle-bound ferrocene. From the values of this property, other parameters were calculated, including the micellar hydrodynamic radius, RH, and aggregation number, N(agg); the latter was also theoretically calculated. We determined the values of the diffusion coefficient as a function of various experimental variables and observed the following trends: The diffusion coefficient decreases as a function of increasing surfactant concentration (no additional electrolyte added); it decreases as a function of increasing surfactant concentration at fixed NaBr concentration; and it shows a complex dependence (increase then decrease) on the NaBr concentration at a fixed RMe(3)ABr concentration. The value of the intermicellar interaction parameter decreases and then increases as a function of increasing NaBr concentration. These results are discussed in terms of intermicellar,interactions and the effect of NaBr on the micellar surface charge density and sphere-to-rod geometry change. The NaBr concentration required to induce the latter change increases rapidly as a function of decreasing the length of R: no geometry change was detected for C(10)Me(3)ABr. Values of N(agg) increase as I function of increasing the length of R and are in good agreement with both literature values and values that were calculated theoretically. Thus, MV is a convenient and simple technique for obtaining fundamental properties of surfactant solutions, including additive-induced changes of micellar parameters (N(agg)) and morphology changes.
Resumo:
Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.
Resumo:
The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1 mM while at pH 9.0 the surfactant effect is more intense above 1 mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Resumo:
There is an increasing interest in lipid nanoparticles because of their suitability for several administration routes. Thus, it becomes even more relevant the physicochemical characterization of lipid materials with respect to their polymorphism, lipid miscibility and stability, as well as the assessment of the effect of surfactant on the type and structure of these nanoparticles. This work focuses on the physicochemical characterization of lipid matrices composed of pure stearic acid or of mixtures of stearic acid-capric/caprylic triglycerides, for drug delivery. The lipids were analyzed by Differential Scanning Calorimetry (DSC), Wide Angle X-ray Diffraction (WAXD), Polarized Light Microscopy (PLM) and hydrophilic-lipophilic balance (HLB) in combination with selected surfactants to determine the best solid-to-liquid ratio. Based on the results obtained by DSC and WAXD, the selected qualitative and quantitative composition contributed for the production of stable nanoparticles, since the melting and the tempering processes provided important information on the thermodynamic stability of solid lipid matrices. The best HLB value obtained for stearic acid-capric/caprylic triglycerides was 13.8, achieved after combining these lipids with accepted surfactants (trioleate sorbitan and polysorbate 80 in the ratio of 10:90). The proposed combinations were shown useful to obtain a stable emulsion to be used as intermediate form for the production of lipid nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the effects of the addition of surfactants sodium stearoyl lactate (SSL) and sucrose ester (SE) on the functional properties of films produced with polysaccharides mixtures (methylcellulose/glucomannan/pectin in 1/4/1 ratio, respectively) and gelatin. The films were produced by the casting method and characterized for their water vapor permeability (WVP), mechanical (tensile strength and elongation to break point), morphological and optical properties. Films with low WVP were obtained with surfactants. Addition of SE to the films with polysaccharide/gelatin ratio of 90/10 showed improved mechanical properties. Films presented smooth surfaces with micro voids and lumpiness, depending on the surfactant tested. Surfactants increased the opacity of the films by a factor of 1-3%. All film properties were dependent on the surfactant affinity for the biopolymer matrix. SE presented more affinity for biopolymer matrix containing high polysaccharide proportion, and SSL presented more affinity for polymer matrix containing high gelatin proportion. The addition of surfactants decreased the water vapor permeability of the films, increasing their hydrophobic character.
Resumo:
The paper by Yu and Saupe on the first biaxial nematic phase created excitement for a number of reasons. Some theories of biaxial phases already existed, but experimental observation was still lacking. The phase was discovered in a lyotropic system with three components, which in theory is difficult. Lyotropic liquid crystals are composed of supramolecular assemblies of amphiphilic molecules, which may change shape and size as a function of concentration and temperature. The experimental phase diagram of the lyotropic biaxial phase was rather complex, with the biaxial region inserted between nematic cylindrical and nematic discotic phases via second-order transitions. In addition, re-entrant behaviour was evident. Saupe investigated further systems experimentally, observing that the biaxial phase might be absent in cases where a direct transition between the cylindrical and discotic phases occurred. He provided a range of theoretical and experimental contributions on the properties of these lyotropics, but was very cautious regarding the detailed amphiphilic assemblies involved. The present paper reviews this area, focusing on proposals for the structure of the micellar assemblies. Emphasis is placed on recent papers which indicate a transformation of the two uniaxial shapes, in mixing conditions, both from the theoretical and the experimental point of view, and to questions still requiring further study.
Resumo:
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 degrees C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L(2)), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L(1) and L(2)). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous ""dry"" surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from ""dry"" to the water droplet structures within the L(2) phase. SAXS analyses have also been performed for selected LC samples. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Lyotropic nematics consisting of surfactant-cosurfactant water solutions may present a biaxial phase or direct U(+) <-> U(-) transitions, in different regions of the temperature-relative concentration phase diagram, for different systems and compositions. We propose that these may be related to changes of uniaxial micellar form, which may occur either smoothly or abruptly. Smooth change of cylinder-like into disc-like shapes requires a distribution of Maier-Saupe interaction constants and we consider two limiting cases for the distribution of forms: a single Gaussian and a double Gaussian. Alternatively, an abrupt change of form is described by a discontinuous distribution of interaction constants. Our results show that the dispersive distributions yield a biaxial phase, while an abrupt change of shape leads to coexistence of uniaxial phases. Fitting the theory to the experiment for the ternary system KL/decanol/D2O leads to transition lines in very good agreement with experimental results. In order to rationalise the results of the comparison, we analyse temperature and concentration form dependence, which connects micellar and experimental macroscopic parameters. Physically consistent variations of micellar asymmetry, amphiphile partitioning and volume are obtained. To the best of the authors` knowledge, this is the first truly statistical microscopic approach that is able to model experimentally observed lyotropic biaxial nematic phases.