2 resultados para bivalve molluscs

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in Sao Paulo, Brazil. The SC counts varied from < 1 to 3.4 x 103 PFU/100 ml in seawater (73 samples tested), from < 1 to 4.7 x 10(2) PFU/g in plankton (46 samples tested), and from < 1 to 2.2 x 10(1) PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de Sao Sebastiao (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de Sao Sebastiao and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from Sao Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25,15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mLL(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill`s catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde. MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mLL(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mLL(-1) diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration. (C) 2011 Elsevier B.V. All rights reserved.