5 resultados para biocatalysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Hydroxypropargylpiperidones rac-1-3 were efficiently obtained by a one-pot three-component coupling reaction; enantioenriched propargylpiperidones were then obtained by a kinetic resolution process using the lipase from Candida antarctica. Lipase CALB has been shown to efficiently catalyse the stereocontrolled acetylation of hydroxypropargylpiperidones rac-3 by promoting stereodiscrimination at the carbinolic centre. The enzymatic catalytic processes allow the separation of the (S,R)- and (S,S)-3 diastereoisomers into the corresponding acetates produced as a (R,S)- and (R,R)-6 diastereoisomeric pair. The CALB was able to discriminate the stereogenic centre of the secondary (R)-enantiomer of rac-3 according to the Kaslauzkas rule. The remote stereogenic centre was not discriminated by the lipase. The functionalised enantioenriched diastereoisomers obtained are important building blocks in organic synthesis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An efficient method for chemoenzymatic dynamic kinetic resolution of selenium-containing chiral amines (organoselenium-1-phenylethanamines) has been developed, leading to the corresponding amides in excellent enantioselectivities and high isolated yields. This one-pot procedure employs two different types of catalysts: Pd on barium sulphate (Pd/BaSO(4)) as racemization catalyst and lipase (CAL-B) as the resolution catalyst. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The improvement of the enzymatic performance of Aspergillus terreus and Rhizopus oryzae in enantioselective bioreductions by using glycerol as a co-solvent has been studied. In the most of the bioreductions, glycerol has demonstrated its potential for improved conversions (up to >99%) and enantioselectivities (up to >99%) when compared to reactions in aqueous or other aqueous-organic media (THF, diethyl ether, toluene, DMSO and acetonitrile). Moreover, high isolated yields of the desired chiral alcohols have been obtained on a preparative scale showing the great potential of this green solvent in biocatalysis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of isosorbide aliphatic polyesters is demonstrated by the use of Novozym 435, a catalyst consisting of Candida antarctica lipase B immobilized on a macroporous support Several experimental procedures were tested and azeotropic distillation was most effective in removing low mass byproduct Furthermore, the use of diethyl ester derivatives of diacid comonomers gave isosorbide copolyesters with highest Isolated yield and molecular weights The length of the diacid aliphatic chain was less restrictive, but with a clear preference for longer aliphatic chains The molecular mass values of the obtained products were equivalent or higher than those obtained by nonenzymatic polymerizations, a clear illustration of the potential of enzymatic over conventional catalysis The ability of Novozym 435 to catalyze the synthesis of isosorbide polyester with weight-average molecular weights in excess of 40000 Da was unexpected given that isosorbide has two chemically distinct secondary hydroxyl groups This is the first example in which isosorbide polyesters were synthesized by enzyme catalysis, opening a large array of possibilities for this important class of biomass-derived building blocks Because these polymers are potential biomaterials the total absence of conventional Lewis acid catalyst residues represents a major Improvement in the toxicity of the material
Resumo:
The asymmetric reduction of 2-chloro-1-phenylethanone (1) by seven strains of marine fungi was evaluated and afforded (S)-(-)-2-chloro-1-phenylethanol with, in the best case, an enantiomeric excess of 50% and an isolated yield of 60%. The ability of marine fungi to catalyse the reduction was directly dependent on growth in artificial sea water-based medium containing a high concentration of Cl(-) (1.2 M). When fungi were grown in the absence of artificial sea water, no reduction of 1 by whole cells was observed. The biocatalytic reduction of 1 was more efficient at neutral rather than acidic pH values and in the absence of glucose as co-substrate.