7 resultados para bacterial gene

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Modern sugarcane (Saccharum spp.) is the leading sugar crop and a primary energy crop. It has the highest level of `vertical` redundancy (2n = 12x = 120) of all polyploid plants studied to date. It was produced about a century ago through hybridization between two autopolyploid species, namely S. officinarum and S. spontaneum. In order to investigate the genome dynamics in this highly polyploid context, we sequenced and compared seven hom(oe)ologous haplotypes (bacterial artificial chromosome clones). Our analysis revealed a high level of gene retention and colinearity, as well as high gene structure and sequence conservation, with an average sequence divergence of 4% for exons. Remarkably, all of the hom(oe)ologous genes were predicted as being functional (except for one gene fragment) and showed signs of evolving under purifying selection, with the exception of genes within segmental duplications. By contrast, transposable elements displayed a general absence of colinearity among hom(oe)ologous haplotypes and appeared to have undergone dynamic expansion in Saccharum, compared with sorghum, its close relative in the Andropogonea tribe. These results reinforce the general trend emerging from recent studies indicating the diverse and nuanced effect of polyploidy on genome dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the gamma-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA-dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosynthesis of quinolinate, the de novo precursor of nicotinamide adenine dinucleotide (NAD), may be performed by two distinct pathways, namely, the bacterial aspartate (aspartate-to-quinolinate) and the eukaryotic kynurenine (tryptophan-to-quinolinate). Even though the separation into eukaryotic and bacterial routes is long established, recent genomic surveys have challenged this view, because certain bacterial species also carry the genes for the kynurenine pathway. In this work, both quinolinate biosynthetic pathways were investigated in the Bacteria clade and with special attention to Xanthomonadales and Bacteroidetes, from an evolutionary viewpoint. Genomic screening has revealed that a small number of bacterial species possess some of the genes for the kynurenine pathway, which is complete in the genus Xanthomonas and in the order Flavobacteriales, where the aspartate pathway is absent. The opposite pattern (presence of the aspartate pathway and absence of the kynurenine pathway) in close relatives (Xylella ssp. and the order Bacteroidales, respectively) points to the idea of a recent acquisition of the kynurenine pathway through lateral gene transfer in these bacterial groups. In fact, sequence similarity comparison and phylogenetic reconstruction both suggest that at least part of the genes of the kynurenine pathway in Xanthomonas and Flavobacteriales is shared by eukaryotes. These results reinforce the idea of the role that lateral gene transfer plays in the configuration of bacterial genomes, thereby providing alternative metabolic pathways, even with the replacement of primary and essential cell functions, as exemplified by NAD biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia cuiicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortus Delta wbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. Delta wbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.