5 resultados para bacterial exoproteolytic activity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Anticarsia gemmatalis) were the objectives of this study. Twelve aerobic and anaerobic isolates of proteolytic bacteria were obtained from the caterpillar gut in calcium caseinate agar. The number of colony forming units (CFUs) of proteolytic bacteria was higher when the bacteria were extracted from caterpillars reared on artificial diet rather than on soybean leaves (1.73 +/- 0.35 X 10(3) and 0.55 +/- 0.22 X 10(3) CFU/mg gut, respectively). The isolated bacteria were divided into five distinct groups, according to their polymerase chain reaction restriction fragment-length polymorphism profiles. After molecular analysis, biochemical tests and fatty acid profile determination, the bacteria were identified as Bacillus subtilis, Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii, and Staphylococcus xylosus. Bacterial proteolytic activity was assessed through in vitro colorimetric assays for (general) proteases, serine proteases, and cysteine proteases. The isolated bacteria were able of hydrolyzing all tested substrates, except Staphylococcus xylosus, which did not exhibit serine protease activity. This study provides support for the hypothesis that gut proteases from velvetbean caterpillar are not exclusively secreted by the insect cells but also by their symbiotic gut bacteria. The proteolytic activity from gut symbionts of the velvetbean caterpillar is suggestive of their potential role minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean, with implications for the management of this insect pest species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ohr (organic hydroperoxide resistance) family of 15-kDa Cys-based, thiol-dependent peroxidases is central to the bacterial response to stress induced by organic hydroperoxides but not by hydrogen peroxide. Ohr has a unique three-dimensional structure and requires dithiols, but not monothiols, to support its activity. However, the physiological reducing system of Ohr has not yet been identified. Here we show that lipoylated enzymes present in the bacterial extracts of Xylella fastidiosa interacted physically and functionally with this Cys-based peroxidase, whereas thioredoxin and glutathione systems failed to support Ohr peroxidase activity. Furthermore, we could reconstitute in vitro three lipoyl-dependent systems as the Ohr physiological reducing systems. We also showed that OsmC from Escherichia coli, an orthologue of Ohr from Xylella fastidiosa, is specifically reduced by lipoyl-dependent systems. These results represent the first description of a Cys-based peroxidase that is directly reduced by lipoylated enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in Sao Paulo, Brazil. The SC counts varied from < 1 to 3.4 x 103 PFU/100 ml in seawater (73 samples tested), from < 1 to 4.7 x 10(2) PFU/g in plankton (46 samples tested), and from < 1 to 2.2 x 10(1) PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de Sao Sebastiao (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de Sao Sebastiao and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from Sao Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide`s primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trehalase (EC 3.2.1.28) hydrolyzes only alpha, alpha`- trehalose and is present in a variety of organisms, but is most important in insects and fungi. Crystallographic data showed that bacterial trehalase has 0312 and E496 as the catalytical residues and three Arg residues in the active site. Those residues have homologous in all family 37 trehalases including Spodoptera frugiperda trehalase (0322, E520, R169, R227, R287). To test the role of these residues, mutants of trehalase were produced. All mutants were at least four orders of magnitude less active than wild type trehalase and no structural difference between these mutants and wild type enzyme were discernible by circular dichroism. D322A and E520 pH-activity profile lacked the alkaline arm and the acid arm, respectively, suggesting that D322 is the acid and E520 the basic catalyst. Azide increases E520A activity three times, confirming its action as the basic catalyst. Taking into account the decrease in activity after substitution for alanine residue, the three arginine residues are as important as the catalytical ones to trehalase activity. This clarifies the previous misidentification of an Arg residue as the acid catalyst. As far as we know, this is the first report on the functional identification residues important for trehalase activity. (C) 2010 Elsevier Ltd. All rights reserved.