81 resultados para autonomic regulation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objectives The present study investigates the hemodynamic and autonomic regulation during sleep-awake transitions and across different sleep cycles in patients with essential hypertension. Methods Nineteen individuals free of sleep apnea (10 normotensive and nine hypertensive matched for age, sex, and body mass index) underwent a standard polysomnography, with simultaneous electrocardiography and beat-to-beat blood pressure monitoring (Portapres). All measurements were determined while awake (before and after sleep), as well as in the beginning and at end of the sleep cycle (first/last cycle of nonrapid and rapid eye movement stages). Results Systolic blood pressure was higher in hypertensives and exhibited a similar reduction to the normotensives ones in initial nonrapid eye movement sleep. This reduction was because of different mechanisms: a significant fall in cardiac output in normotensives, whereas in hypertensives was also dependent of a decrease in peripheral vascular resistance. Hypertensive patients presented lower heart rate variation and attenuated baroreflex sensitivity during sleep but not immediately before and after sleep. Spectral analysis suggested a higher sympathetic activity in the sleep stages in hypertension. Additionally, a progressive sympathetic predominance (final rapid eye movement> initial rapid eye movement and awake period postsleep> awake period presleep) was observed in both groups. Conclusion Hypertension is associated with depressed baroreflex sensitivity and increased sympathetic activation during sleep. The greater sympathetic predominance at the end of night (preceding the morning surge of sympathetic activity) could be implicated in the occurrence of cardiovascular events. J Hypertens 27: 1655-1663 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
In the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats Guide-cannulae were bilaterally Implanted in the direction of the PVN of male Wistar rats Femoral artery and vein were catheterized one day before the experiments Chemoreflex was activated with KCN (30 mu g/0 05 ml iv) before and after microinjections of P2 receptors antagonist into the PVN Microinjection of PPADS a non selective P2X antagonist Into the PVN (n = 6) produced a significant increase in the baseline MAP (99 +/- 2 vs 112 +/- 3 mmHg) and HR (332 +/- 8 vs 375 +/- 8 bpm) but had no effect on the pressor and bradycardic responses to chemoreflex activation Intravenous injection of vasopres in receptors antagonist after microinjection of PPADS into the PVN produced no effect on the increased baseline MAP Simultaneous microinjection of PPADS and KYN into the PVN (n=6) had no effect in the baseline MAP HR or in the pressor and bradycardic responses to chemoreflex activation We conclude that P2 purinoceptors in the PVN are involved in the modulation of baseline autonomic function to the cardiovascular system but not in the cardiovascular responses to chemoreflex activation in awake rats (C) 2010 Elsevier B V All rights reserved
Resumo:
GABAergic, nitrergic and glutamatergic mechanisms in the PVN on the baseline mean arterial pressure (MAP), heart rate (HR) and on the cardiovascular responses to chemoreflex activation in awake rat were evaluated. Chemoreflex was activated with KCN before and after microinjections into the PVN. Bicuculline into the PVN increased baseline MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (49+/-5 vs 47+/-6 mmHg) or bradicardic (-213+/-23 vs -256+/-42 bpm) responses (n=7). Kynurenic acid into the PVN (n=6) produced no significant changes in the MAP (98+/-3 vs 100+/-3 mmHg), HR (330+/-5 vs 339+/-12 mmHg) or in the pressor (50+/-4 vs 42+/-4 mmHg) and bradicardic (-252+/-4 vs -285+/-16 bpm) responses to chemoreflex. L-NAME into the PVN (n=8) produced increase in the MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (52+/-5 vs 47+/-6 mmHg) or bradicardic (-253+/-19 vs -320+/-25 bpm) responses to chemoreflex. We conclude that GABA(A) and nitric oxide in the PVN are involved in the maintenance of the baseline MAP but not in the modulation of the responses to chemoreflex. The results also show that Glutamate receptors in the PVN are not involved in maintenance of the baseline MAP, HR or in the cardiovascular responses to chemoreflex in awake rats. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Moraes DJA, Bonagamba LGH, Zoccal DB, Machado BH. Modulation of respiratory responses to chemoreflex activation by L-glutamate and ATP in the rostral ventrolateral medulla of awake rats. Am J Physiol Regul Integr Comp Physiol 300: R1476-R1486, 2011. First published March 16, 2011; doi:10.1152/ajpregu.00825.2010.-Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Botzinger complex (BotC)] and inspiratory [pre-Botzinger complex (pre-BotC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BotC) enhanced the tachypneic (120 +/- 9 vs. 180 +/- 9 cpm; P < 0.01) and attenuated the pressor response (55 +/- 2 vs. 15 +/- 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-BotC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/BotC reduced chemoreflex tachypneic response (127 +/- 6 vs. 70 +/- 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/BtC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 +/- 2 vs. 157 +/- 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/BtC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/BtC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.
Resumo:
Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Spontaneously hypertensive rats develop left ventricular hypertrophy, increased blood pressure and blood pressure variability, which are important determinants of heart damage, like the activation of renin-angiotensin system. AIMS: To investigate the effects of the time-course of hypertension over 1) hemodynamic and autonomic patterns (blood pressure; blood pressure variability; heart rate); 2) left ventricular hypertrophy; and 3) local and systemic Renin-angiotensin system of the spontaneously hypertensive rats. METHODS: Male spontaneously hypertensive rats were randomized into two groups: young (n=13) and adult (n=12). Hemodynamic signals (blood pressure, heart rate), blood pressure variability (BPV) and spectral analysis of the autonomic components of blood pressure were analyzed. LEFT ventricular hypertrophy was measured by the ratio of LV mass to body weight (mg/g), by myocyte diameter (μm) and by relative fibrosis area (RFA, %). ACE and ACE2 activities were measured by fluorometry (UF/min), and plasma renin activity (PRA) was assessed by a radioimmunoassay (ng/mL/h). Cardiac gene expressions of Agt, Ace and Ace2 were quantified by RT-PCR (AU). RESULTS: The time-course of hypertension in spontaneously hypertensive rats increased BPV and reduced the alpha index in adult spontaneously hypertensive rats. Adult rats showed increases in left ventricular hypertrophy and in RFA. Compared to young spontaneously hypertensive rats, adult spontaneously hypertensive rats had lower cardiac ACE and ACE2 activities, and high levels of PRA. No change was observed in gene expression of Renin-angiotensin system components. CONCLUSIONS: The observed autonomic dysfunction and modulation of Renin-angiotensin system activity are contributing factors to end-organ damage in hypertension and could be interacting. Our findings suggest that the management of hypertensive disease must start before blood pressure reaches the highest stable levels and the consequent established end-organ damage is reached.
Resumo:
Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.
Resumo:
OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8), fructose (n=8), and fructose+ simvastatin (n=8). Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks). Simvastatin treatment (5 mg/kg/day for 2 wks) was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min) relative to that in the control group (4.4+ 0.29%/min). Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min). The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg). The sympathetic effect was enhanced in the fructose group (73 + 7 bpm) compared with that in the control (48 + 7 bpm) and fructose+simvastatin groups (31+8 bpm). The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm) compared with that in control (49 + 9 bpm) and fructose animals (46+5 bpm). CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results support the hypothesis that statins reduce the cardiometabolic risk in females with metabolic syndrome.
Resumo:
Background: Although clinical diabetes mellitus is obviously a high risk factor for myocardial infarction (MI), in experimental studies disagreement exists about the sensitivity to ischemic injury of an infarcted myocardium. Recently, our group demonstrated that diabetic animals presented better cardiac function recovery and cellular resistance to ischemic injury than nondiabetics. In the present study, we evaluated the chronic effects of MI on left ventricular (LV) and autonomic functions in streptozotocin (STZ) diabetic rats. Methods: Male Wistar rats were divided into 4 groups: control (C, n = 15), diabetes (D, n = 16), MI (I, n = 21), and diabetes + MI (DI, n = 30). MI was induced 15 days after diabetes (STZ) induction. Ninety days after MI, LV and autonomic functions were evaluated (8 animals each group). Left ventricular homogenates were analyzed by Western blotting to evaluate the expression of calcium handling proteins. Results: MI area was similar in infarcted groups (similar to 43%). Ejection fraction and + dP/dt were reduced in I compared with DI. End-diastolic pressure was additionally increased in I compared with DI. Compared with DI, I had increased Na(+)-Ca(2+) exchange and phospholamban expression (164%) and decreased phosphorylated phospholamban at serine(16) (65%) and threonine(17) (70%) expression. Nevertheless, diabetic groups had greater autonomic dysfunction, observed by baroreflex sensitivity and pulse interval variability reductions. Consequently, the mortality rate was increased in DI compared with I, D, and C groups. Conclusions: LV dysfunction in diabetic animals was attenuated after 90 days of myocardial infarction and was associated with a better profile of calcium handling proteins. However, this positive adaptation was not able to reduce the mortality rate of DI animals, suggesting that autonomic dysfunction is associated with increased mortality in this group. Therefore, it is possible that the better cardiac function has been transitory, and the autonomic dysfunction, more prominent in diabetic group, may lead, in the future, to the cardiovascular damage.
Resumo:
The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.
Resumo:
Background: The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THYI. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods: Prostate CD90(+) stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results: The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion: CD90(+) prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.
Resumo:
Background: Hypertension, diabetes and obesity are not isolated findings, but a series of interacting interactive physiologic derangements. Taking into account genetic background and lifestyle behavior, AI (autonomic imbalance) could be a common root for RHTN (resistant hypertension) or RHTN plus type 2 diabetes (T2D) comorbidity development. Moreover, circadian disruption can lead to metabolic and vasomotor impairments such as obesity, insulin resistance and resistant hypertension. In order to better understand the triggered emergence of obesity and T2D comorbidity in resistant hypertension, we investigated the pattern of autonomic activity in the circadian rhythm in RHTN with and without type 2 diabetes (T2D), and its relationship with serum adiponectin concentration. Methods: Twenty five RHTN patients (15 non-T2D and 10 T2D, 15 males, 10 females; age range 34 to 70 years) were evaluated using the following parameters: BMI (body mass index), biochemical analysis, serum adiponectinemia, echocardiogram and ambulatory electrocardiograph heart rate variability (HRV) in time and frequency domains stratified into three periods: 24 hour, day time and night time. Results: Both groups demonstrated similar characteristics despite of the laboratory analysis concerning T2D like fasting glucose, HbA1c levels and hypertriglyceridemia. Both groups also revealed disruption of the circadian rhythm: inverted sympathetic and parasympathetic tones during day (parasympathetic > sympathetic tone) and night periods (sympathetic > parasympathetic tone). T2D group had increased BMI and serum triglyceride levels (mean 33.7 +/- 4.0 vs 26.6 +/- 3.7 kg/m(2) - p = 0.00; 254.8 +/- 226.4 vs 108.6 +/- 48.7 mg/dL - p = 0.04), lower levels of adiponectin (6729.7 +/- 3381.5 vs 10911.5 +/- 5554.0 ng/mL - p = 0.04) and greater autonomic imbalance evaluated by HRV parameters in time domain compared to non-T2D RHTN patients. Total patients had HRV correlated positively with serum adiponectin (r = 0.37 [95% CI - 0.04 - 1.00] p = 0.03), negatively with HbA1c levels (r = -0.58 [95% CI -1.00 - -0.3] p = 0.00) and also adiponectin correlated negatively with HbA1c levels (r = -0.40 [95% CI -1.00 - -0.07] p = 0.02). Conclusion: Type 2 diabetes comorbidity is associated with greater autonomic imbalance, lower adiponectin levels and greater BMI in RHTN patients. Similar circadian disruption was also found in both groups indicating the importance of lifestyle behavior in the genesis of RHTN.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
Background: The Borg Scale may be a useful tool for heart failure patients to self-monitor and self-regulate exercise on land or in water (hydrotherapy) by maintaining the heart rate (HR) between the anaerobic threshold and respiratory compensation point. Methods and Results: Patients performed a cardiopulmonary exercise test to determine their anaerobic threshold/respiratory compensation points. The percentage of the mean HR during the exercise session in relation to the anaerobic threshold HR (%EHR-AT), in relation to the respiratory compensation point (%EHR-RCP), in relation to the peak HR by the exercise test (%EHR-Peak) and in relation to the maximum predicted HR (%EHR-Predicted) was calculated. Next, patients were randomized into the land or water exercise group. One blinded investigator instructed the patients in each group to exercise at a level between ""relatively easy and slightly tiring"". The mean HR throughout the 30-min exercise session was recorded. The %EHR-AT and %EHR-Predicted did not differ between the land and water exercisegroups, but they differed in the %EHR-RCP (95 +/- 7 to 86 +/- 7. P<0.001) and in the %EHR-Peak (85 +/- 8 to 78 +/- 9, P=0.007). Conclusions: Exercise guided by the Borg scale maintains the patient's HR between the anaerobic threshold and respiratory compensation point (ie, in the exercise training zone). (Circ J 2009; 73: 1871-1876)