9 resultados para apigenin
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The phytochemical investigation of Piper umbellata leaves yielded nine compounds including one terpenoid glucoside, five flavones (vitexin 2"-O-β-glucopyranoside, apigenin 8-C-β-D-glucopyranoside,orientin 8-C-β-D-glucopyranoside,5-hydroxy-7,3',4'-trimethoxy-flavone and velutin), two lignans (sesamin e dihydrocubebin) and 4-nerolidylcathecol. Excepting 4-nerolidylcathecol, all compounds have not been described from this species yet.
Resumo:
The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 mu g/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 +/- 1.8 of inhibition at 100 mu g/mL) and glyco-lytic pH-drop by S. mutans in biofilms (125 and 250 mu g/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15% ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth-and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals` dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease.
Resumo:
The present work reports amounts of flavonoids and phenylpropanoids of culms of three sugarcane varieties and of raw juice, syrup, molasse and VHP sugar. The antioxidant activity of those materials was evaluated by the DPPH and beta-carotene/linoleic acid methods. The predominant phenolics in culms were phenylpropanoids (caffeic, chlorogenic and coumaric acids), while flavones (apigenin, tricin and luteolin derivatives) appeared in lower amounts. Differences were noted either among phenolic profiles of sugarcane culms or between culms and sugarcane products. The antioxidant activities of solutions from most samples were similar or higher than a 80 mu M Trolox solution. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam. irradiation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The interaction of ten natural polyphenolic compounds (chlorogenic acid, apigenin, catechin, epicatechin, flavanone, flavone, quercetin, rutin, vicenin-2 and vitexin) with human serum albumin and mixtures of human serum albumin and alpha(1)-acid glycoprotein under near physiological conditions is studied by capillary electrophoresis-frontal analysis. Furthermore, the binding of these polyphenolic compounds to total plasmatic proteins is evaluated using ultrafiltration and capillary electrophoresis. In spite of the relatively small differences in the chemical structures of the compounds studied, large differences were observed in their binding behaviours to plasmatic proteins. The hydrophobicity, the presence/absence of some functional groups, steric hindrance and spatial arrangement seem to be key factors in the affinity of natural polyphenols towards plasmatic proteins.
Resumo:
Objectives The purpose of the present work was to characterize file pharmacological profile of different L. alba chemotypes and to correlate the obtained data to the presence of chemical constituents detected by phytochemical analysis. Methods Essential oils from each L. alba chemotype (LP1-LP7) were characterized by gas chromatography-mass spectrometry (GC-MS) and extracted non-volatile compounds were analysed by HPLC and GC-MS. The anticonvulsant actions of file extracted compounds were studied in pentylenetetrazole-induced clonic seizures in mice and then effect oil motor coordination was studied using the rota-rod test in rats. The synaptosomes and synaptic membranes of the rats were examined for the influence of LP3 chemotype extract oil GABA uptake and binding experiments. Key findings Behavioural parameters encompassed by the pentylenetetrazole test indicated that 80% ethanolic extracts of LP1, LP3 and LP6 L. alba chemotypes were more effective as anticonvulsant agents. Neurochemical assays using synaptosomes and synaptic membranes showed that L. alba LP3 chemotype 80% ethanolic extract inhibited GABA uptake and GABA binding ill a dose-dependent manner. HPLC analysis showed that LP1, LP3 and LP6 80% ethanolic extracts presented a similar profile of constituents, differing from those seen in LP2, LP4, LP5 and LP7 80% ethanolic extracts, which exhibited no anticonvulsant effect. GC-MS analysis indicated the Occurrence of phenylpropanoids in methanolic fractions obtained from LP1, LP3 and LP6 80% ethanolic extracts and also the accumulation of inositol and flavonoids in hydroalcoholic fractions. Conclusions Our results suggest that the anticonvulsant properties shown by L. alba might be correlated to the presence of it complex of non-volatile Substances (phenylpropanoids, flavonoids and/or inositols), and also to the volatile terpenoids (beta-myrcene, citral, limonene and carvone), which have been previously Validated as anticonvulsants.
Resumo:
Camarea is a South-American endemic genus comprising eight species. In the present work leaf flavonoids of seven species of Camarea were identified, aiming to evaluate the usefulness of their distribution as a taxonomic aid. A total of 12 flavonoids were isolated and identified. Free aglycones, such as apigenin, chrysoeriol, kaempferol and quercetin, as well as 7-O-glycosides of apigenin and luteolin, 3-O-glycosides of kaempferol and quercetin were identified. Flavonoid distribution in Camarea species, taking into account aglycones and aglycone moieties of glycosides, was used to obtain a phenogram of chemical affinities. Apigenin, chrysoeriol and kaempferol were the main discriminating characters for links establishment. The resultant tree suggests the links: 1) Camarea hirsuta, Camarea affinis and C. affinis x C. hirsuta; 2) Camarea elongata and Camarea axillaris; 3) Camarea sericea and Camarea humifusa. The results are in agreement with morphological similarities and disagree with several points of n-alkane evidence. The results support the recognition of Camarea triphylla as synonymy of C axillaris. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Antioxidant potential is generally investigated by assaying the ability of a compound to protect biological systems from free radicals. However, non-radical reactive oxygen species can also be harmful. Singlet molecular oxygen ((1)O(2)) is generated by energy transfer to molecular oxygen. The resulting (1)O(2) is able to oxidize the nucleoside 2`-deoxyguanosine (dGuo), which leads to the formation of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and spiroiminodihydantoin 2`-deoxyribonucleoside diastereomers (dSp) in an aqueous solution. The main objective of the present study was to verify whether the presence of flavonoids (flavone, apigenin, quercetin, morin and catechin) at different concentrations could protect dGuo from (1)O(2) damage. Of the tested flavonoids, flavone possessed antioxidant activity, as determined by a decrease in the formation of both products. Apigenin, morin, quercetin and catechin all increased the formation of 8-oxodGuo at a concentration of 100 mu M. The quantification of plasmid strand breaks after treatment with formamidopyrimidine-DNA glycosylase showed that flavone protected and quercetin and catechin enhanced DNA oxidation. Our results show that compounds, such as flavonoids, may affect the product distribution of (1)O(2)-mediated oxidation of dGuo, and, in particular, high concentrations of flavonoids with hydroxyl groups in their structure lead to an increase in the formation of the mutagenic lesion 8-oxodGuo. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The methanol extract from aerial parts of the Peperomia blanda (Piperaceae) yielded two C-glycosyl-flavones. Their structures were elucidated on the basis of extensive spectroscopic analysis, including 1D and 2D NMR, chemical transformation and comparison with the related known compounds. The structure of the new flavonoids were established as 4`-methoxy-vitexin 7-O-beta-D-xylopyranoside (1) (7-O-beta-D-xylopyranosyl-8-C-beta-D-glucopyranosyl-4`-methoxy-apigenin) and vicenin-2 (2). The antioxidant activity of both compounds was investigated using the DPPH assay. Both compounds showed only modest activity, with IC50 values of 357.2 mu M for 1, and 90.5 mu M for 2. (C) 2008 Elsevier B.V. All rights reserved.