3 resultados para alternative stable states
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In arthropods, most cases of morphological dimorphism within males are the result of a conditional evolutionarily stable strategy (ESS) with status-dependent tactics. In conditionally male-dimorphic species, the status` distributions of male morphs often overlap, and the environmentally cued threshold model (ET) states that the degree of overlap depends on the genetic variation in the distribution of the switchpoints that determine which morph is expressed in each value of status. Here we describe male dimorphism and alternative mating behaviors in the harvestman Serracutisoma proximum. Majors express elongated second legs and use them in territorial fights; minors possess short second legs and do not fight, but rather sneak into majors` territories and copulate with egg-guarding females. The static allometry of second legs reveals that major phenotype expression depends on body size (status), and that the switchpoint underlying the dimorphism presents a large amount of genetic variation in the population, which probably results from weak selective pressure on this trait. With a mark-recapture study, we show that major phenotype expression does not result in survival costs, which is consistent with our hypothesis that there is weak selection on the switchpoint. Finally, we demonstrate that switchpoint is independent of status distribution. In conclusion, our data support the ET model prediction that the genetic correlation between status and switchpoint is low, allowing the status distribution to evolve or to fluctuate seasonally, without any effect on the position of the mean switchpoint.
Resumo:
Intense male-male competition for females may drive the evolution of male morphological dimorphism, which is frequently associated with alternative mating tactics. Using modern techniques for the detection of discontinuous allometries, we describe male dimorphism in the Neotropical harvestman Longiperna concolor, the males of which use their elongated, sexually dimorphic legs IV in fights for the possession of territories where females lay eggs. We also tested three predictions related to the existence of alternative mating tactics: (1) if individuals with relatively longer legs IV (majors) are more likely to monopolize access to reproductive resources, they are expected to remain close to stable groups of females more than individuals with relatively shorter legs IV (minors) do; (2) if minors achieve fertilization by moving between territories, they are expected to be less faithful to specific sites; and (3) majors should be observed in aggressive interactions more often. We individually marked all the individuals from a population of Longiperna during the reproductive season and recorded the location of each sighting for males and females as well as the identity of males involved in fights. Majors were more likely to have harems, and large majors were even more likely to do so. Majors were more philopatric and all males involved in fights belonged to this morph. These results strongly suggest that the mating tactic of the majors is based on resource defense whereas that of the minors probably relies on sneaking into the territories of the majors and furtively copulating with females.
Resumo:
The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. Practical Application Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.