2 resultados para agro-ecosystems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Recent developments have highlighted the importance of forest amount at large spatial scales and of matrix quality for ecological processes in remnants. These developments, in turn, suggest the potential for reducing biodiversity loss through the maintenance of a high percentage of forest combined with sensitive management of anthropogenic areas. We conducted a multi-taxa survey to evaluate the potential for biodiversity maintenance in an Atlantic forest landscape that presented a favorable context from a theoretical perspective (high proportion of mature forest partly surrounded by structurally complex matrices). We sampled ferns, butterflies, frogs, lizards, bats, small mammals and birds in interiors and edges of large and small mature forest remnants and two matrices (second-growth forests and shade cacao plantations), as well as trees in interiors of small and large remnants. By considering richness, abundance and composition of forest specialists and generalists, we investigated the biodiversity value of matrix habitats (comparing them with interiors of large remnants for all groups except tree), and evaluated area (for all groups) and edge effects (for all groups except trees) in mature forest remnants. our results suggest that in landscapes comprising high amounts of mature forest and low contrasting matrices: (1) shade cacao plantations and second-growth forests harbor an appreciable number of forest specialists; (2) most forest specialist assemblages are not affected by area or edge effects, while most generalist assemblages proliferate at edges of small remnants. Nevertheless, differences in tree assemblages, especially among smaller trees, Suggest that observed patterns are unlikely to be stable over time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Leaf fibers are fibers that run lengthwise through the leaves of most monocotyledonous plants such as pineapple, banana, etc. Pineapple (Ananas comosus) and Banana (Musa indica) are emerging fiber having a very large potential to be used for composite materials. Over 150,000 ha of pineapple and over 100,000 ha of banana plantations are available in Brazil for the fruit production and enormous amount of agricultural waste is produced. This residual waste represents one of the single largest sources of cellulose fibers available at almost no cost. The potential consumers for this fiber are pulp and paper, chemical feedstock, textiles and composites for the automotive, furniture and civil construction industry.