25 resultados para adenomatous polyposis coli
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.
Resumo:
The phylogenetic group distribution of Escherichia coli strains isolated from the Sorocaba and Jaguari Rivers located in the State of Sao Paulo, Brazil, is described. E. coli strains from group D were found in both rivers while one strain from group B2 was isolated from the Sorocaba river. These two groups often include strains that can cause extraintestinal diseases. Most of the strains analyzed were allocated into the phylogenetic groups A and B1, supporting the hypothesis that strains from these phylogenetic groups are more abundant in tropical areas. Though both rivers are located in urbanized and industrialized areas where the main source of water pollution is considered to derive from domestic sewage, our results suggest that the major sources of contamination in the sampling sites of both rivers might have originated from animals and not humans.
Resumo:
Laboratory strains and natural isolates of Escherichia coli differ in their level of stress resistance due to strain variation in the level of the sigma factor sigma(S) (or RpoS), the transcriptional master controller of the general stress response. We found that the high level of RpoS in one laboratory strain (MC4100) was partially dependent on an elevated basal level of ppGpp, an alarmone responding to stress and starvation. The elevated ppGpp was caused by two mutations in spoT, a gene associated with ppGpp synthesis and degradation. The nature of the spoT allele influenced the level of ppGpp in both MC4100 and another commonly used K-12 strain, MG1655. Introduction of the spoT mutation into MG1655 also resulted in an increased level of RpoS, but the amount of RpoS was lower in MG1655 than in MC4100 with either the wild-type or mutant spoT allele. In both MC4100 and MG1655, high ppGpp concentration increased RpoS levels, which in turn reduced growth with poor carbon sources like acetate. The growth inhibition resulting from elevated ppGpp was relieved by rpoS mutations. The extent of the growth inhibition by ppGpp, as well as the magnitude of the relief by rpoS mutations, differed between MG1655 and MC4100. These results together suggest that spoT mutations represent one of several polymorphisms influencing the strain variation of RpoS levels. Stress resistance was higher in strains with the spoT mutation, which is consistent with the conclusion that microevolution affecting either or both ppGpp and RpoS can reset the balance between self-protection and nutritional capability, the SPANC balance, in individual strains of E coli.
Resumo:
Recombinant Bacillus subtilis strains, either spores or vegetative cells, may be employed as safe and low cost orally delivered live vaccine vehicles. In this study, we report the use of an orally delivered B. subtilis vaccine strain to boost systemic and secreted antibody responses in mice i.m. primed with a DNA vaccine encoding the structural subunit (CfaB) of the CFA/I fimbriae encoded by enterotoxigenic Escherichia coli (ETEC), an important etiological agent of diarrhea among travelers and children living in endemic regions. DBA/2 female mice submitted to the prime-boost immunization regimen developed synergic serum (IgG) and mucosal (IgA) antibody responses to the target CfaB antigen. Moreover, in contrast to mice immunized only with one vaccine formulation, sera harvested from prime-boosted vaccinated individuals inhibited adhesion of ETEC cells to human red blood cells. Additionally, vaccinated dams conferred full passive protection to suckling newborn mice challenged with a virulent ETEC strain. Taken together the present results further demonstrate the potential use of recombinant B. subtilis strains as an alternative live vaccine vehicle. (C) 2008 Elsevier Ltd. All rights reserved.
The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells
Resumo:
Enteropathogenic Escherichia coli (EPEC) adheres in vivo and in vitro to epithelial cells. Two main adhesins, the bundle-forming pilus and intimin, encoded by the Up operon and eae, respectively, are responsible for the localized and the intimate adherence phenotypes. Deletion of the pst operon of EPEC abolishes the transport of inorganic phosphate through the phosphate-specific transport system and causes the constitutive expression of the PHO regulon genes. In the absence of pst there is a decrease in the expression of the main EPEC adhesins and a reduction in bacterial adherence to epithelial cells in vitro. This effect is not related to PHO constitutivity, because a Delta pst phoB double mutant that is defective in the transcription of the PHO genes also displayed low levels of adherence and expression of adhesins. Likewise, a PHO-constitutive phoR mutation did not affect bacterial adherence. The expression of the per operon, which encodes the Up and ler regulators PerA and PerC, is also negatively affected by the pst deletion. Overall, the data presented here demonstrate that the pst operon of EPEC plays a positive role in the bacterial adherence mechanism by increasing the expression of perA and perC and consequently the transcription of bfp and eae.
Resumo:
The natural diversity of the eft operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT+ (25 strains) only or LT+/ST+ (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the eft operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.
Resumo:
sigma(S) is responsible for the transcriptional regulation of genes related to protection against stresses and bacterial survival and it accumulates in the cell under conditions of stress, such as nutrient limitation. An increase in the levels of sigma(S) causes a reduction in the expression of genes that are transcribed by RNA polymerase associated with the principal sigma factor, sigma(70). phoA, that encodes alkaline phosphatase (AP) is expressed under phosphate shortage conditions, and is also repressed by sigma(S). Here we show that in a Pi-limited chemostat, accumulation of rpoS mutations is proportional to the intrinsic level of sigma(S) in the cells. Acquisition of mutations in rpoS relieves repression of the PHO genes. We also devised a non-destructive method based on the rpoS effect on AP that differentiates between rpo(S+) and rpoS mutants, as well as between high and low-sigma(S) producers. Using this method, we provide evidence that sigma(S) contributes to the repression of AP under conditions of Pi excess and that AP variation among different strains is at least partly due to intrinsic variation in sigma(S) levels. Consequently, a simple and non-destructive AP assay can be employed to differentiate between strains expressing different levels of sigma(S) on agar plates.
Resumo:
Heat-labile toxins (LTs) have ADP-ribosylation activity and induce the secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains in different mammalian hosts. LTs also act as adjuvants following delivery via mucosal, parenteral, or transcutaneous routes. Previously we have shown that LT produced by human-derived ETEC strains encompass a group of 16 polymorphic variants, including the reference toxin (LT1 or hLT) produced by the H10407 strain and one variant that is found mainly among bacterial strains isolated from pigs (LT4 or pLT). Herein, we show that LT4 ( with six polymorphic sites in the A (K4R, K213E, and N238D) and B (S4T, A46E, and E102K) subunits) displays differential in vitro toxicity and in vivo adjuvant activities compared with LT1. One in vitro generated LT mutant (LTK4R), in which the lysine at position 4 of the A subunit was replaced by arginine, showed most of the LT4 features with an similar to 10-fold reduction of the cytotonic effects, ADP-ribosylation activity, and accumulation of intracellular cAMP in Y1 cells. Molecular dynamic studies of the A subunit showed that the K4R replacement reduces the N-terminal region flexibility and decreases the catalytic site crevice. Noticeably, LT4 showed a stronger Th1-biased adjuvant activity with regard to LT1, particularly concerning activation of cytotoxic CD8(+) T lymphocytes when delivered via the intranasal route. Our results further emphasize the relevance of LT polymorphism among human-derived ETEC strains that may impact both the pathogenicity of the bacterial strain and the use of these toxins as potential vaccine adjuvants.
Resumo:
The dengue virus NS1 protein has been shown to be a protective antigen under different experimental conditions but the recombinant protein produced in bacterial expression systems is usually not soluble and loses structural and immunological features of the native viral protein In the present study, experimental conditions leading to purification and refolding of the recombinant dengue virus type 2 (DENV-2) NS1 protein expressed in Escherichia coil are described The refolded recombinant protein was recovered as heat-stable soluble dimers with preserved structural features, as demonstrated by spectroscopic methods In addition, antibodies against epitopes of the NS1 protein expressed in eukaryotic cells recognized the refolded protein expressed in E coli but not the denatured form or the same protein submitted to a different refolding condition Collectively, the results demonstrate that the recombinant NS1 protein preserved important conformation and antigenic determinants of the native virus protein and represents a valuable reagent either for the development of vaccines or for diagnostic methods. (C) 2010 Elsevier B V All rights reserved
Resumo:
Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.
Resumo:
Aims: To evaluate the sensitivity and specificity of polyclonal and monoclonal antibodies (Mabs) against intimin in the detection of enteropathogenic and enterohaemorrhagic Escherichia coli isolates using immunoblotting. Methods and Results: Polyclonal and Mabs against the intimin-conserved region were raised, and their reactivities were compared in enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) isolates using immunoblotting analysis. In comparison with rat antiserum, rabbit anti-intimin IgG-enriched fraction had a stronger recognition pattern to a wide spectrum of intimin types in different EPEC and EHEC serotypes. On the other hand, murine monoclonal IgG2b specific to intimin, with dissociation constant of 1 center dot 3 x 10-8 mol l-1, failed in the detection of some of these isolates. Conclusion: All employed antibodies showed 100% specificity, not reacting with any of the eae-negative isolates. The sensitivity range was according to the employed antisera, and 97% for rabbit anti-intimin IgG-enriched fraction, followed by 92% and 78% sensitivity with rat antisera and Mab. Significance and Impact of the Study: The rabbit anti-intimin IgG-enriched fraction in immunoblotting analysis is a useful tool for EPEC and EHEC diagnoses.
Resumo:
Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA-dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation.
Resumo:
Aims: Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent. Methods and Results: About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx(1), stx(2), eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)-PCR was performed to investigate the variants of stx(1) and stx(2), and the flagellar antigen (fliC) genes in nonmotile isolates. Five isolates were eae(+) and stx(-), and belonged to serotypes O128:H2/beta-intimin (2), O145:H2/gamma, O153:H7/beta and O178:H7/epsilon. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx(1c)stx(2d-O118) (46.9%), stx(1c) (27.2%), stx(2d-O118) (23.4%), and stx(1c)stx(2dOX3a) (2.5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates. Conclusions: This study demonstrated that healthy sheep in Sao Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC. Significance and Impact of the Study: As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.
Resumo:
Feces of 70 diarrhoeic and 230 non-diarrhoeic domestic cats from Sao Paulo, Brazil were investigated for enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and enterotoxigenic (ETEC) Escherichia coli types. While ETEC and EHEC strains were not found, 15 EPEC strains were isolated from 14 cats, of which 13 were non-diarrhoeic, and one diarrhoeic. None of 15 EPEC strains carried the bfpA gene or the EPEC adherence factor plasmid, indicating atypical EPEC types. The EPEC strains were heterogeneous with regard to intimin types, such as eae-theta (three strains), eae-kappa (n = 3), eae-alpha 1 (n = 2), eae-iota (n = 2), one eae-alpha 2, eae-beta 1 and eae-eta each, and two were not typeable. The majority of the EPEC isolates adhered to HEp-2 cells in a localized adherence-like pattern and were positive for fluorescence actin staining. The EPEC strains belonged to 12 different serotypes, including O111:H25 and O125:H6, which are known to be pathogens in humans. Multi locus sequence typing revealed a close genetic similarity between the O111:H25 and O125:H6 strains from cats, dogs and humans. Our results show that domestic cats are colonized by EPEC, including serotypes previously described as human pathogens. As these EPEC strains are also isolated from humans, a cycle of mutual infection by EPEC between cats and its households cannot be ruled out, though the transmission dynamics among the reservoirs are not yet understood clearly.
Resumo:
The type I and type II heat-labile enterotoxins (LT-I and LT-II) are strong mucosal adjuvants when they are coadministered with soluble antigens. Nonetheless, data on the parenteral adjuvant activities of LT-II are still limited. Particularly, no previous study has evaluated the adjuvant effects and induced inflammatory reactions of LT-II holotoxins or their B pentameric subunits after delivery via the intradermal (i.d.) route to mice. In the present report, the adjuvant and local skin inflammatory effects of LT-IIa and its B subunit pentamer (LT-IIaB(5)) were determined. When coadministered with ovalbumin (OVA), LT-IIa and, to a lesser extent, LT-IIaB(5) exhibited serum IgG adjuvant effects. In addition, LT-IIa but not LT-IIaB(5) induced T cell-specific anti-OVA responses, particularly in respect to induction of antigen-specific cytotoxic CD8(+) T cell responses. LT-IIa and LT-IIaB(5) induced differential tissue permeability and local inflammatory reactions after i.d. injection. Of particular interest was the reduced or complete lack of local reactions, such as edema and tissue induration, in mice i.d. inoculated with LT-IIa and LT-IIaB(5), respectively, compared with mice immunized with LT-I. In conclusion, the present results show that LT-IIa and, to a lesser extent, LT-IIaB(5) exert adjuvant effects when they are delivered via the i.d. route. In addition, the low inflammatory effects of LT-IIa and LT-IIaB(5) in comparison to those of LT-I support the usefulness of LT-IIa and LT-IIaB(5) as parenterally delivered vaccine adjuvants.