3 resultados para active power loss minimization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A numerous population of weak line galaxies (WLGs) is often left out of statistical studies on emission-line galaxies (ELGs) due to the absence of an adequate classification scheme, since classical diagnostic diagrams, such as [O iii]/H beta versus [N ii]/H alpha (the BPT diagram), require the measurement of at least four emission lines. This paper aims to remedy this situation by transposing the usual divisory lines between star-forming (SF) galaxies and active galactic nuclei (AGN) hosts and between Seyferts and LINERs to diagrams that are more economical in terms of line quality requirements. By doing this, we rescue from the classification limbo a substantial number of sources and modify the global census of ELGs. More specifically, (1) we use the Sloan Digital Sky Survey Data Release 7 to constitute a suitable sample of 280 000 ELGs, one-third of which are WLGs. (2) Galaxies with strong emission lines are classified using the widely applied criteria of Kewley et al., Kauffmann et al. and Stasinska et al. to distinguish SF galaxies and AGN hosts and Kewley et al. to distinguish Seyferts from LINERs. (3) We transpose these classification schemes to alternative diagrams keeping [N ii]/H alpha as a horizontal axis, but replacing H beta by a stronger line (H alpha or [O ii]), or substituting the ionization-level sensitive [O iii]/H beta ratio with the equivalent width of H alpha (W(H alpha)). Optimized equations for the transposed divisory lines are provided. (4) We show that nothing significant is lost in the translation, but that the new diagrams allow one to classify up to 50 per cent more ELGs. (5) Introducing WLGs in the census of galaxies in the local Universe increases the proportion of metal-rich SF galaxies and especially LINERs. In the course of this analysis, we were led to make the following points. (i) The Kewley et al. BPT line for galaxy classification is generally ill-used. (ii) Replacing [O iii]/H beta by W(H alpha) in the classification introduces a change in the philosophy of the distinction between LINERs and Seyferts, but not in its results. Because the W(H alpha) versus [N ii]/H alpha diagram can be applied to the largest sample of ELGs without loss of discriminating power between Seyferts and LINERs, we recommend its use in further studies. (iii) The dichotomy between Seyferts and LINERs is washed out by WLGs in the BPT plane, but it subsists in other diagnostic diagrams. This suggests that the right wing in the BPT diagram is indeed populated by at least two classes, tentatively identified with bona fide AGN and `retired` galaxies that have stopped forming stars and are ionized by their old stellar populations.
Resumo:
Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.