4 resultados para active control
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Leptin is involved in the control of energy storage by the body. Low serum leptin levels, as seen in starvation, are associated with impaired inflammatory T cell responses that can be reversed by exogenous leptin. Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and recurrent infections. Several defects in T cell function have also been described, and allergy, autoimmune disease, and lymphomas or other malignancies can be present. Previous studies in Brazilian CVID patients have shown that, in contrast with mononuclear cells from healthy controls, CVID cells cultured with phytohemagglutinin and added leptin increased the proliferative response and decreased activation-induced apoptosis. Interleukin (IL)-2 and especially IL-4 production also increased significantly, although the effects of exposure to leptin were not observed uniformly in CVID patients. The majority, however, responded in some degree, and some exhibited completely restored values of the four parameters. These remarkable results indicate leptin could be used to improve immune function in these patients. On the other hand, we found no specific correlation between serum leptin levels and the number of infectious events over a 24-month period, presence of autoimmunity, allergies, or cancer in these patients. The results suggest that the absolute value of serum leptin does not determine the clinical behavior of patients or responses to leptin in vitro. Of note is the divergence between serum leptin, response to leptin in vitro, and the presence of autoimmunity, indicating the need to identify the cellular and molecular players involved in the regulation of the immune response by leptin in CVID.
Resumo:
Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH2O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH2O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH2O collection. The Oxyphan (R) fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH2O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO3-, by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-(CD)-D-4) enabled the development of a complete analytical protocol for the CH2O evaluation in air. (C) 2008 Published by Elsevier B.V.
Resumo:
The ethanol extract from Xyris pteygoblephara aerial parts was evaluated against five microorganism strains, by the microdilution and agar diffusion methods. Extract fractionation led to the isolation of three compounds, whose structures were assigned by spectrometric data (113 and 2D NMR, IR, MS and UV) as (3R,4R)-(-)-6-methoxy-3,4-dihydro-3-n-pentil-4-acethoxy-1H-2-benzopyran-1-one (1), moronic acid and quercetin. The absolute configuration of I was defined by circular dichroism spectroscopy and comparison with data reported for other dihydroisocoumarins. Assay of 1 (100 mu g/disc) by the agar diffusion method against clinical isolates of the dermatophytes Epidermophyton floccosum (inhibition zone, mm +/- s.d.: 4.5 +/- 0.8), Trichophyton mentagrophytes (4.8 +/- 0.4) and Trichophyton rubrum (10.2 +/- 0.8) revealed similar inhibition zones to the positive control amphotericin B (32 mu g/disc; 5.0 +/- 0.2; 5.0 +/- 0.6 and 8.8 +/- 1.2, respectively). The result corroborates the ethnomedical use of Xyris species to treat dermatitis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Time-dependent fluctuations in surface-enhanced Raman scattering (SERS) intensities were recorded from a roughened silver electrode immersed in diluted solutions of rhodamine 6G (R6G) and congo red (CR). These fluctuations were attributed to a small number of SERS-active molecules probing regions of extremely high electromagnetic field (hot spots) at the nanostructured surface. The time-dependent distribution of SERS intensities followed a tailed statistics at certain applied potentials, which has been linked to single-molecule dynamics. The shape of the distribution was reversibly tuned by the applied voltage. Mixtures of both dyes, R6G and CR, at low concentrations were also investigated. Since R6G is a cationic dye and CR is an anionic dye, the statistics of the SERS intensity distribution of either dye in a mixture were independently controlled by adjusting the applied potential. The potential-controlled distribution of SERS intensities was interpreted by considering the modulation of the surface coverage of the adsorbed dye by the interfacial electric field. This interpretation was supported by a two-dimensional Monte Carlo simulation that took into account the time evolution of the surface configuration of the adsorbed species and their probability to populate a hypothetical hot spot. The potential-controlled SERS dynamics reported here is a first step toward the spectroelectrochemical investigation of redox processes at the single-molecule level by SERS.