5 resultados para action potentials

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In contrast to the many studies on the venoms of scorpions, spiders, snakes and cone snails, tip to now there has been no report of the proteomic analysis of sea anemones venoms. In this work we report for the first time the peptide mass fingerprint and some novel peptides in the neurotoxic fraction (Fr III) of the sea anemone Bunodosoma cangicum venom. Fr III is neurotoxic to crabs and was purified by rp-HPLC in a C-18 column, yielding 41 fractions. By checking their molecular masses by ESI-Q-Tof and MALDI-Tof MS we found 81 components ranging from near 250 amu to approximately 6000 amu. Some of the peptidic molecules were partially sequenced through the automated Edman technique. Three of them are peptides with near 4500 amu belonging to the class of the BcIV, BDS-I, BDS-II, APETx1, APETx2 and Am-II toxins. Another three peptides represent a novel group of toxins (similar to 3200 amu). A further three molecules (similar to similar to 4900 amu) belong to the group of type 1 sodium channel neurotoxins. When assayed over the crab leg nerve compound action potentials, one of the BcIV- and APETx-like peptides exhibits an action similar to the type 1 sodium channel toxins in this preparation, suggesting the same target in this assay. On the other hand one of the novel peptides, with 3176 amu, displayed an action similar to potassium channel blockage in this experiment. In summary, the proteomic analysis and mass fingerprint of fractions from sea anemone venoms through MS are valuable tools, allowing us to rapidly predict the occurrence of different groups of toxins and facilitating the search and characterization of novel molecules without the need of full characterization of individual components by broader assays and bioassay-guided purifications. It also shows that sea anemones employ dozens of components for prey capture and defense. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eugenol is a phenylpropene obtained from the essential oils of plants such as clove and basil which has ample use in dentistry. Eugenol possesses analgesic effects that may be related to the inhibition of voltage-dependent Na(+) channels and/or to the activation of TRPV1 receptors or both. In the present study, electrophysiological parameters were taken from the compound action potentials of the isolated rat sciatic nerve and from neurons of the superior cervical ganglion (SCG) impaled with sharp microelectrodes under current-clamp conditions. In the isolated rat sciatic nerve, eugenol inhibited the compound action potential in a concentration-dependent manner. Action potentials recorded from SCG neurons were inhibited by eugenol with an IC(50) of 0.31 mM. At high concentrations (2 mM), during brief applications. eugenol caused significant action potential blockade while it did not interfere with the resting membrane potential or the membrane input resistance. Surprisingly, however, at low eugenol concentrations (0.6 mM), during long time applications, a reversible reduction (by about 50%) in the input membrane resistance was observed, suggesting the possible involvement of a secondary delayed effect of eugenol to reduce neuronal excitability. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide`s primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservation laws have provided an elegant and efficient tool to evaluate the open string field theory interaction vertex, they have been originally implemented in the case where the string field is expanded in the Virasoro basis. In this work we derive conservation laws in the case where the string field is expanded in the so-called sliver L(0)-basis. As an application of this new set of conservation laws, we compute the open string field action relevant to the tachyon condensation and in order to present not only an illustration but also an additional information, we evaluate the action without imposing a gauge choice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bose systems, subject to the action of external random potentials, are considered. For describing the system properties, under the action of spatially random potentials of arbitrary strength, the stochastic mean-field approximation is employed. When the strength of disorder increases, the extended Bose-Einstein condensate fragments into spatially disconnected regions, forming a granular condensate. Increasing the strength of disorder even more transforms the granular condensate into the normal glass. The influence of time-dependent external potentials is also discussed. Fastly varying temporal potentials, to some extent, imitate the action of spatially random potentials. In particular, strong time-alternating potential can induce the appearance of a nonequilibrium granular condensate.