62 resultados para accounting-based valuation models
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the treatment of major parasitic infectious diseases, with special emphasis on its role in the discovery of new drugs against schistosomiasis, a tropical disease that affects millions of people worldwide. In the present work, we have determined the inhibitory potency and developed descriptor- and fragment-based quantitative structure-activity relationships (QSAR) for a series of 9-deazaguanine analogs as inhibitors of SmPNP. Significant statistical parameters (descriptor-based model: r² = 0.79, q² = 0.62, r²pred = 0.52; and fragment-based model: r² = 0.95, q² = 0.81, r²pred = 0.80) were obtained, indicating the potential of the models for untested compounds. The fragment-based model was then used to predict the inhibitory potency of a test set of compounds, and the predicted values are in good agreement with the experimental results
Resumo:
Valuation of projects for the preservation of water resources provides important information to policy makers and funding institutions. Standard contingent valuation models rely on distributional assumptions to provide welfare measures. Deviations from assumed and actual distribution of benefits are important when designing policies in developing countries, where inequality is a concern. This article applies semiparametric methods to obtain estimates of the benefit from a project for the preservation of an important Brazilian river basin. These estimates lead to significant differences from those obtained using the standard parametric approach.
Resumo:
In this review paper we collect several results about copula-based models, especially concerning regression models, by focusing on some insurance applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) is a key parameter in agricultural meteorology since it is related to epidemiology of many important crops, controlling pathogen infection and development rates. Because LWD is not widely measured, several methods have been developed to estimate it from weather data. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results, but their complexity is a disadvantage for operational use. Alternatively, empirical models have been used despite their limitations. The simplest empirical models use only relative humidity data. The objective of this study was to evaluate the performance of three RH-based empirical models to estimate LWD in four regions around the world that have different climate conditions. Hourly LWD, air temperature, and relative humidity data were obtained from Ames, IA (USA), Elora, Ontario (Canada), Florence, Toscany (Italy), and Piracicaba, Sao Paulo State (Brazil). These data were used to evaluate the performance of the following empirical LWD estimation models: constant RH threshold (RH >= 90%); dew point depression (DPD); and extended RH threshold (EXT_RH). Different performance of the models was observed in the four locations. In Ames, Elora and Piracicaba, the RH >= 90% and DPD models underestimated LWD, whereas in Florence these methods overestimated LWD, especially for shorter wet periods. When the EXT_RH model was used, LWD was overestimated for all locations, with a significant increase in the errors. In general, the RH >= 90% model performed best, presenting the highest general fraction of correct estimates (F(C)), between 0.87 and 0.92, and the lowest false alarm ratio (F(AR)), between 0.02 and 0.31. The use of specific thresholds for each location improved accuracy of the RH model substantially, even when independent data were used; MAE ranged from 1.23 to 1.89 h, which is very similar to errors obtained with published physical models for LWD estimation. Based on these results, we concluded that, if calibrated locally, LWD can be estimated with acceptable accuracy by RH above a specific threshold, and that the EXT_RH method was unsuitable for estimating LWD at the locations used in this study. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.
Resumo:
Survival or longevity is an economically important trait in beef cattle. The main inconvenience for its inclusion in selection criteria is delayed recording of phenotypic data and the high computational demand for including survival in proportional hazard models. Thus, identification of a longevity-correlated trait that could be recorded early in life would be very useful for selection purposes. We estimated the genetic relationship of survival with productive and reproductive traits in Nellore cattle, including weaning weight (WW), post-weaning growth (PWG), muscularity (MUSC), scrotal circumference at 18 months (SC18), and heifer pregnancy (HP). Survival was measured in discrete time intervals and modeled through a sequential threshold model. Five independent bivariate Bayesian analyses were performed, accounting for cow survival and the five productive and reproductive traits. Posterior mean estimates for heritability (standard deviation in parentheses) were 0.55 (0.01) for WW, 0.25 (0.01) for PWG, 0.23 (0.01) for MUSC, and 0.48 (0.01) for SC18. The posterior mean estimates (95% confidence interval in parentheses) for the genetic correlation with survival were 0.16 (0.13-0.19), 0.30 (0.25-0.34), 0.31 (0.25-0.36), 0.07 (0.02-0.12), and 0.82 (0.78-0.86) for WW, PWG, MUSC, SC18, and HP, respectively. Based on the high genetic correlation and heritability (0.54) posterior mean estimates for HP, the expected progeny difference for HP can be used to select bulls for longevity, as well as for post-weaning gain and muscle score.
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.
Resumo:
Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests if in fact it should be m - 1. If the hypothesis is rejected, m is increased and a new test is carried out. The method continues (increasing m) until the hypothesis is accepted. The theoretical core of the method is the full Bayesian significance test, an intuitive Bayesian approach, which needs no model complexity penalization nor positive probabilities for sharp hypotheses. Numerical experiments were based on a cDNA microarray dataset consisting of expression levels of 205 genes belonging to four functional categories, for 10 distinct strains of Saccharomyces cerevisiae. To analyze the method's sensitivity to data dimension, we performed principal components analysis on the original dataset and predicted the number of classes using 2 to 10 principal components. Compared to Mclust (model-based clustering), our method shows more consistent results.
Resumo:
Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network. Copyright (c) 2008 J. R. C. Piqueira and F. B. Cesar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
Strawberries represent the main source of ellagic acid derivatives in the Brazilian diet, corresponding to more than 50% of all phenolic compounds found in the fruit. There is a particular interest in the determination of the ellagic acid content in fruits because of possible chemopreventive benefits. In the present study, the potential health benefits of purified ellagitannins from strawberries were evaluated in relation to the antiproliferative activity and in vitro inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. Therefore, a comparison among ellagic acid, purified ellagitannins, and a strawberry extract was done to evaluate the possible synergistic effects of phenolics. In relation to the antiproliferative activity, it was observed that ellagic acid had the highest percentage inhibition of cell proliferation. The strawberry extract had lower efficacy in inhibiting the cell proliferation, indicating that in the case of this fruit there is no synergism. Purified ellagitannins had high alpha-amylase and ACE inhibitory activities. However, these compounds had low alpha-glucosidase inhibitory activity. These results suggested that the ellagitannins and ellagic acid have good potential for the management of hyperglycemia and hypertension linked to type 2 diabetes. However, further studies with animal and human models are needed to advance the in vitro assay-based biochemical rationale from this study.
Resumo:
Local food diversity and traditional crops are essential for cost-effective management of the global epidemic of type 2 diabetes and associated complications of hypertension. Water and 12% ethanol extracts of native Peruvian fruits such as Lucuma (Pouteria lucuma), Pacae (Inga feuille), Papayita arequipena (Carica pubescens), Capuli (Prunus capuli), Aguaymanto (Physalis peruviana), and Algarrobo (Prosopis pallida) were evaluated for total phenolics, antioxidant activity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay, and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension linked to type 2 diabetes. The total phenolic content ranged from 3.2 (Aguaymanto) to 11.4 (Lucuma fruit) mg/g of sample dry weight. A significant positive correlation was found between total phenolic content and antioxidant activity for the ethanolic extracts. No phenolic compound was detected in Lucuma (fruit and powder) and Pacae. Aqueous extracts from Lucuma and Algarrobo had the highest alpha-glucosidase inhibitory activities. Papayita arequipena and Algarrobo had significant ACE inhibitory activities reflecting antihypertensive potential. These in vitro results point to the excellent potential of Peruvian fruits for food-based strategies for complementing effective antidiabetes and antihypertension solutions based on further animal and clinical studies.