5 resultados para Zea Boddie
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
To date, limited numbers of dental calculus samples have been analyzed by researchers in diverse parts of the world. The combined analyses of these have provided some general guidelines for the analysis of calculus that is non-destructive to archaeological teeth. There is still a need for a quantitative study of large numbers of calculus samples to establish protocols, assess the level of contamination, evaluate the quantity of microfossils in dental calculus, and to compare analysis results with the literature concerning the biology of calculus formation. We analyzed dental calculus from 53 teeth from four Brazilian sambaquis. Sambaquis are the shell-mounds that were established prehistorically along the Brazilian coast. The analysis of sambaqui dental calculi shows that there are relatively high concentrations of microfossils (phytoliths and starch), mineral fragments, and charcoal in dental calculus. Mineral fragments and charcoal are possibly contaminants. The largest dental calculi have the lowest concentrations of microfossils. Biologically, this is explained by individual variation in calculus formation between people. Importantly, starch is ubiquitous in dental calculus. The starch and phytoliths show that certainly Dioscorea (yam) and Araucaria angustifolia (Parana pine) were eaten by sambaqui people. Araceae (arum family), Ipomoea batatas (sweet potato) and Zea mays (maize) were probably in their diet. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.
Resumo:
Insect digestive chymotrypsins are present in a large variety of insect orders but their substrate specificity still remains unclear. Ewer insect chymotrypsins from 3 different insect orders (Dictyoptera, Coleoptera and two Lepidoptera) were isolated using affinity chromatography. Enzymes presented molecular masses in the range of 20 to 31 kDa and pH optima in the range of 7.5 to 10.0. Kinetic characterization. using different, colorimetric and fluorescent substrates indicated that insect chymotrypsins differ from, bovine chymotrypsin in their primary specificity toward small substrates (like N-benzoyl-L-Tyr p-nitroanilide) rather than on their preference for large substrates (exemplified by Succynil-Ala-Ala-Pro-Phe P-nitroanilide). Chloromethyl ketones (TPCK, N-alpha-tosyl-L-Phe chloromethyl ketone and Z-GGF-CK, N-carbobenzoxy-Gly-Gly-phe-CK) inactivated all chymotrypsins legated. Inactivation rates follow apparent first-order kinetics with variable second order rates (TPCK, 42 to 130 M(-1)s(-1); Z-GGF-CK, 150 to 450 M(-1)s(-1) that may be remarkably low for S. frugiperda chymotrypsin (TPCK, 6 M(-1)s(-1); Z-GGF-CK, 6.1 M(-1) s(-1)). Homology modelling and sequence alignment showed that. in lepidopteran chymotrypsins, differences in the amino acid residues in the neighborhood of the catalytic His 57 may affect its pKa, value. This is Proposed as the cause of the decrease in His 57 reactivity toward chloromethyl ketones. Such amino acid replacement in the active site is proposed. to be an adaptation to the presence of dietary ketones. (C) 2009 Wiley Periodicals, Inc.
Resumo:
Transcription factors (TFs) are major players in gene regulatory networks and interactions between TFs and their target genes furnish spatiotemporal patterns of gene expression. Establishing the architecture of regulatory networks requires gathering information on TFs, their targets in the genome, and the corresponding binding sites. We have developed GRASSIUS (Grass Regulatory Information Services) as a knowledge-based Web resource that integrates information on TFs and gene promoters across the grasses. In its initial implementation, GRASSIUS consists of two separate, yet linked, databases. GrassTFDB holds information on TFs from maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum spp.), and rice (Oryza sativa). TFs are classified into families and phylogenetic relationships begin to uncover orthologous relationships among the participating species. This database also provides a centralized clearinghouse for TF synonyms in the grasses. GrassTFDB is linked to the grass TFome collection, which provides clones in recombination-based vectors corresponding to full-length open reading frames for a growing number of grass TFs. GrassPROMDB contains promoter and cis-regulatory element information for those grass species and genes for which enough data are available. The integration of GrassTFDB and GrassPROMDB will be accomplished through GrassRegNet as a first step in representing the architecture of grass regulatory networks. GRASSIUS can be accessed from www.grassius.org.
Resumo:
Insect chymotrypsins are distinctively sensitive to plant protein inhibitors, suggesting that they differ in subsite architecture and hence in substrate specificities. Purified digestive chymotrypsins from insects of three different orders were assayed with internally quenched fluorescent oligopeptides with three different amino acids at P1 (Tyr, Phe, and Leu) and 13 amino acid replacements in positions P1`, P2, and P3. The binding energy (Delta G(s), calculated from Km values) and the activation energy (Delta G(T)(double dagger), determined from k(cat)/K-m values) were calculated. The hydrophobicities of each subsite were calculated from the efficiency of hydrolysis of the different amino acid replacements at that subsite. The results showed that except for S1, the other subsites (S2, S3, and S1`) vary among chymotrypsins. This result contrasts with insect trypsin data that revealed a trend along evolution, putatively associated with resistance to plant inhibitors. In spite of those differences, the data suggested that in lepidopteran chymotrypsins S2 and S1` bind the substrate ground state, whereas only S1` binds the transition state, supporting aspects of the present accepted mechanism of catalysis. 2008 Elsevier Ltd. All rights reserved.