2 resultados para Xylosidase
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 A degrees C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 A degrees C and pH 6.5 for A. terricola, and 65 A degrees C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 A degrees C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t (50) of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4-3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and beta-xylosidase were detected which might act synergistically with xylanase.
Resumo:
Aspergillus versicolor grown on xylan or xylose produces two beta-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these beta-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same R(f). Temperature optimum of xylan-induced and xylose-induced beta-xylosidases was 45A degrees C and 40A degrees C, respectively, and 35A degrees C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55A degrees C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences.