13 resultados para Xeroderma pigmentoso (XP)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Nucleotide excision repair (NER) eliminates helix-distorting DNA base lesions. Seven XP-deficient genetic complementation groups (XPA to XPG) have already been identified in mammals, and their corresponding genes have been cloned. Hereditary defects in NER are associated with several diseases, including xeroderma pigmentosum (XP). UV-DDB (XPE) is formed by two associated subunits, DDB1 and DDB2. UV-DDB was identified biochemically as a protein factor that exhibits very strong and specific binding to ultraviolet (UV)-treated DNA. As a preliminary step to characterize the components of the NER in the filamentous fungus Aspergillus nidulans, here we identified a putative DDB1 homologue, DdbA. Deletion and expression analysis indicated that A. nidulans ddbA gene is involved in the DNA damage response, more specifically in the UV light response and 4-nitroquinoline oxide (4-NQO) sensitivity. Furthermore, the Delta ddbA strain cannot self-cross and expression analysis showed that ddbA can be induced by oxidative stress and is developmentally regulated in both asexual and sexual processes. The Delta ddbA mutation can genetically interact with uvsB(ATR), atmA(ATM), nkuA(KU70), H2AX-S129A (a replacement of the conserved serine in the C-terminal of H2AX with alanine), and cshB (a mutation in CSB Cockayne`s syndrome protein involved in the transcription-coupled repair subpathway of NER) mutations. Finally, to determine the DdbA cellular localization, we constructed a GFP:DdbA strain. In the presence and absence of DNA damage, DdbA was mostly detected in the nuclei, indicating that DdbA localizes to nuclei and its cellular localization is not affected by the cellular response to DNA damage induced by 4-NQO and UV light.
Resumo:
p53 activation is one of the main signals after DNA damage, controlling cell cycle arrest, DNA repair and apoptosis. We have previously shown that confluent nucleotide excision repair (NER)-deficient cells are more resistant to apoptosis induced by ultraviolet irradiation (UV). Here, we further investigated the effect of cell confluence on UV-induced apoptosis in normal and NER-deficient (XP-A and XP-C) cells, as well as the effects of treatments with the ATWATR inhibitor caffeine, and the patterns of p53 activation. Strong p53 activation was observed in either proliferating or confluent cells. Caffeine increased apoptosis levels and inhibited p53 activation in proliferating cells, suggesting a protective role for p53. However, in confluent NER-deficient cells no effect of caffeine was observed. Transcription recovery measurements showed decreased recovery in proliferating XPA-deficient cells, but no recovery was observed in confluent cells. The levels of the cyclin/Cdk inhibitor, p21(Waf1/Cip1), correlated well with p53 activation in proliferating cells. Surprisingly, confluent cells also showed similar activation of p21(Waf1/Cip1). These results indicate that reduced apoptosis in confluent cells is associated with the deficiency in DNA damage removal, since this effect is not clearly observed in NER-proficient cells. Moreover, the strong activation of p53 in confluent cells, which barely respond to apoptosis, suggests that this protein, under these conditions, is not linked to UV-induced cell death signaling. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair(NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gamma H2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase II alpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Xeroderma pigmentosum patients suffer from extreme photosensitivity caused by a genetic defect in DNA repair pathways. This condition obliges them to live in darkness and avoid sunshine. Although the molecular basis of the defect has been known for more than 40 years now, the treatment possibilities are very limited, and to date all have been focused on the skin. Herein, we summarize the effects of sunlight and the molecular mechanisms implicated in the defects that lead to this syndrome, as well as the strategies that have been tested to alleviate skin manifestations, including cancer. Preclinical attempts to correct genetic defects by means of different gene therapy approaches are also described. All these efforts are now bringing hope and some light into the life of patients and their families.
Resumo:
Anthracyclines have been widely used as antitumor agents, playing a crucial role in the successful treatment of many types of cancer, despite some side effects related to cardiotoxicity. New anthracyclines have been designed and tested, but the first ones discovered, doxorubicin and daunorubicin, continue to be the drugs of choice. Despite their extensive use in chemotherapy, little is known about the DNA repair mechanisms involved in the removal of lesions caused by anthracyclines. The anthracycline cosmomycin D is the main product isolated from Streptomyces olindensis, characterized by a peculiar pattern of glycosylation with two trisaccharide rings attached to the A ring of the tetrahydrotetracene. We assessed the induction of apoptosis (Sub-G(1)) by cosmomycin D in nucleotide excision repair-deficient fibroblasts (XP-A and XP-C) as well as the levels of DNA damage (alkaline comet assay). Treatment of XP-A and XP-C cells with cosmomycin D resulted in apoptosis in a time-dependent manner, with highest apoptosis levels observed 96 h after treatment. The effects of cosmomycin D were equivalent to those obtained with doxorubicin. The broad caspase inhibitor Z-VAD-FMK strongly inhibited apoptosis in these cells, and DNA damage induced by cosmomycin D was confirmed by alkaline comet assay. Cosmomycin D induced time-dependent apoptosis in nucleotide excision repair-deficient fibroblasts. Despite similar apoptosis levels, cosmomycin D caused considerably lower levels of DNA damage compared to doxorubicin. This may be related to differences in structure between cosmomycin D and doxorubicin.
Resumo:
The aim of this study was to evaluate the following acrylic resins: Clássico®, QC-20® and Lucitone®, recommended specifically for thermal polymerization, and Acron MC® and VIPI-WAVE®, made for polymerization by microwave energy. The resins were evaluated regarding their surface nanohardness and modulus of elasticity, while varying the polymerization time recommended by the manufacturer. They were also compared as to the presence of water absorbed by the samples. The technique used was nanoindentation, using the Nano Indenter XP®, MTS. According to an intra-group analysis, when using the polymerization time recommended by the manufacturer, a variation of 0.14 to 0.23 GPa for nanohardness and 2.61 to 3.73 GPa for modulus of elasticity was observed for the thermally polymerized resins. The variation for the resins made for polymerization by microwave energy was 0.15 to 0.22 GPa for nanohardness and 2.94 to 3.73 GPa for modulus of elasticity. The conclusion was that the Classico® resin presented higher nanohardness and higher modulus of elasticity values when compared to those of the same group, while Acron MC® presented the highest values for the same characteristics when compared to those of the same group. The water absorption evaluation showed that all the thermal polymerization resins, except for Lucitone®, presented significant nanohardness differences when submitted to dehydration or rehydration, while only Acron MC® presented no significant differences when submitted to a double polymerization time. Regarding the modulus of elasticity, it was observed that all the tested materials and products, except for Lucitone®, showed a significant increase in modulus of elasticity when submitted to a lack of hydration.
Resumo:
Neste trabalho são investigadas as propriedades mecânicas de poliuretana derivada do óleo de mamona, utilizando a técnica de indentação instrumentada com penetradores de geometrias piramidal e esférica. Foi analisada a influência da forma do penetrador utilizado nos ensaios de indentação instrumentada para se obter valores das propriedades mecânicas de polímero derivado de óleo de mamona. Os penetradores utilizados são de pontas piramidais dos tipos Berkovich e canto de cubo e esférico de raio igual a 150 μm em um Nanoindenter XP TM com cargas aplicadas entre 1 e 200 mN. As penetrações variam de acordo com o formato do penetrador, sendo maiores para pontas agudas. A dureza e o módulo de elasticidade foram determinados, utilizando o método de Oliver e Pharr. Verificou-se que os valores medidos para a dureza são maiores para penetradores mais agudos. Os valores obtidos com a ponta piramidal Berkovich foram de 0,14 GPa para pequenas penetrações e 0,12 GPa para maiores penetrações. Já os valores obtidos com ponta canto de cubo foram 25 a 30% maiores. Isso está relacionado com os volumes das regiões que apresentam deformações plásticas elevadas, no caso de penetradores agudos comparados com os volumes das regiões que sofrem deformações viscoelásticas. A viscosidade aparente determinada, utilizando penetrador esférico em testes de força aplicada constante, é igual a (22 ± 2) × 10(12) Pa.s.
Resumo:
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA3) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO3 staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.
Resumo:
The aim of this research was to perform a stability testing of spray- and spouted bed-dried extracts of Passiflora alata Dryander (Passion flower) under stress storage conditions. Spouted bed- and spray-dried extracts were characterized by determination of the average particle diameter (dP), apparent moisture content (XP), total flavonoid content (TF), and vitexin content. Smaller and more irregular particles were generated by the spouted bed system due to a higher attrition rate (surface erosion) inside the dryer. The SB dryer resulted in an end product with higher concentration of flavonoids (approximate to 10%) and lower moisture content (1.6%, dry basis) than the spray dryer, even with both dryers working at similar inlet drying air temperature and ratio between the extract feed flow rate to drying air flow rate (Ws/Wg). Samples of the spouted bed- and spray-dried extracts were stored at two different temperatures (34 and 45 degrees C) and two different relative humidities (52 and 63% RH for 34 degrees C; 52 and 60% RH for 45 degrees C) in order to perform the stability testing. The dried extracts were stored for 28 days and were analyzed every 4 days. The flavonoid vitexin served as the marker compound, which was assayed during the storage period. Results revealed shelf lives ranging from 9 to 184 days, depending on the drying process and storage conditions.
Resumo:
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Most trichothiodystrophy (TTD) patients present mutations in the xeroderma pigmentosum D (XPD) gene, coding for a subunit of the transcription/repair factor IIH (TFHH) complex involved in nucleotide excision repair (NER) and transcription. After UV irradiation, most TTD/XPD patients are more severely affected in the NER of cyclobutane pyrimidine dimers (CPD) than of 6-4-photoproducts (6-4PP). The reasons for this differential DNA repair defect are unknown. Here we report the first study of NER in response to CPDs or 6-4PPs separately analyzed in primary fibroblasts. This was done by using heterologous photorepair; recombinant adenovirus vectors carrying photolyases enzymes that repair CPD or 64PP specifically by using the energy of light were introduced in different cell lines. The data presented here reveal that some mutations affect the recruitment of TFHH specifically to CPDs, but not to 6-4PPs. This deficiency is further confirmed by the inability of TTD/XPD cells to recruit, specifically for CPDs, NER factors that arrive in a TFIIH-dependent manner later in the NER pathway. For 6-4PPs, we show that TFHH complexes carrying an NH2-terminal XPD mutated protein are also deficient in recruitment of NER proteins downstream of TFUH. Treatment with the histone deacetylase inhibitor trichostatin A allows the recovery of TFHH recruitment to CPDs in the studied TTD cells and, for COOH-terminal XPD mutations, increases the repair synthesis and survival after UV, suggesting that this defect can be partially related with accessibility of DNA damage in closed chromatin regions.
Resumo:
Cockayne syndrome (CS) is a human genetic disorder characterized by sensitivity to UV radiation, neurodegeneration, premature aging among other phenotypes. CS complementation group B (CS-B) gene (csb) encodes the CSB protein (CSB) that is involved in base excision repair of a number of oxidatively induced lesions in genomic DNA in vivo. We hypothesized that CSB may also play a role in cellular repair of the DNA helix-distorting tandem lesion (5`S)-8,5`-cyclo-2`-deoxyadenosine (S-cdA). Among many DNA lesions. S-cdA is unique in that it represents a concomitant damage to both the sugar and base moieties of the same nucleoside. Because of the presence of the C8-C5` covalent bond, S-cdA is repaired by nucleotide excision repair unlike most of other oxidatively induced lesions in DNA, which are subject to base excision repair. To test our hypothesis, we isolated genomic DNA from brain, kidney and liver of wild type and csb knockout (csb(-/-)) mice. Animals were not exposed to any exogenous oxidative stress before the experiment. DNA samples were analysed by liquid chromatography/mass spectrometry with isotope-dilution. Statistically greater background levels of S-cdA were observed in all three organs of csb(-/-) mice than in those of wild type mice. These results suggest the in vivo accumulation of S-cdA in genomic DNA due to lack of its repair in csb(-/-) mice. Thus, this study provides, for the first time, the evidence that CSB plays a role in the repair of the DNA helix-distorting tandem lesion S-cdA. Accumulation of unrepaired S-cdA in vivo may contribute to the pathology associated with CS. Published by Elsevier B.V.