65 resultados para Xenopus laevis oocyte
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Melanin granule (melanosome) dispersion within Xenopus laevis melanophores is evoked either by light or alpha-MSH. We have previously demonstrated that the initial biochemical steps of light and alpha-MSH signaling are distinct, since the increase in cAMP observed in response to alpha-MSH was not seen after light exposure. cAMP concentrations in response to alpha-MSH were significantly lower in cells pre-exposed to light as compared to the levels in dark-adapted melanophores. Here we demonstrate the presence of an adenylyl cyclase (AC) in the Xenopus melanophore, similar to the mammalian type IX which is inhibited by Ca(2+)-calmodulin-activated phosphatase. This finding supports the hypothesis that the cyclase could be negatively modulated by a light-promoted Ca(2+) increase. In fact, the activity of calcineurin PP2B phosphatase was increased by light, which could result in AC IX inhibition, thus decreasing the response to alpha-MSH. St-Ht31, a disrupting agent of protein kinase A (PKA)-anchoring kinase A protein (AKAP) complex totally blocked the melanosome dispersing response to alpha-MSH, but did not impair the photo-response in Xenopus melanophores. Sequence comparison of a melanophore AKAP partial clone with GenBank sequences showed that the anchoring protein was a gravin-like adaptor previously sequenced from Xenopus non-pigmentary tissues. Co-immunoprecipitation of Xenopus AKAP and the catalytic subunit of PKA demonstrated that PKA is associated with AKAP and it is released in the presence of alpha-MSH. We conclude that in X laevis melanophores, AKAP12 (gravin-like) contains a site for binding the inactive PKA thus compartmentalizing PKA signaling and also possesses binding sites for PKC. Light diminishes alpha-MSH-induced increase of cAMP by increasing calcineurin (PP2B) activity, which in turn inhibits adenylyl cyclase type IX, and/or by activating PKC, which phosphorylates the gravin-like molecule, thus destabilizing its binding to the cell membrane. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We describe the first application of a non-radioactive ligand-blotting technique to the characterization of proteins interacting with nematode vitellins. Chromatographically purified vitellins from the free-living nematode Oscheius tipulae were labeled with fluorescein in vitro. Ligand-blotting assays with horseradish peroxidase-conjugated anti-fluorescein antibodies showed that labeled vitellins reacted specifically with a polypeptide of approximately 100 kDa, which we named P100. This polypeptide is a specific worm`s vitellin-binding protein that is present only in adult worms. Blots containing purified O. tipulae vitellin preparations showed no detectable signal in the 100 kDa region, ruling out any possibility of yolk polypeptides self-assembling under the conditions used in our assay. Experiments done in the presence of alpha-methyl mannoside ruled out the possibility of vitellins binding to P100 through mannose residues. Triton X-114 fractionation of whole worm extracts showed that P100 is either a membrane protein or has highly hydrophobic regions. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.
Resumo:
We characterized four eEF1A genes in the alternative rhabditid nematode model organism Oscheius tipulae. This is twice the copy number of eEF1A genes in C. elegans, C. briggsae, and, probably, many other free-living and parasitic nematodes. The introns show features remarkably different from those of other metazoan eEF1A genes. Most of the introns in the eEF1A genes are specific to O. tipulae and are not shared with any of the other genes described in metazoans. Most of the introns are phase 0 (inserted between two codons), and few are inserted in protosplice sites (introns inserted between the nucleotide sequence A/CAG and G/A). Two of these phase 0 introns are conserved in sequence in two or more of the four eEF1A gene copies, and are inserted in the same position in the genes. Neither of these characteristics has been detected in any of the nematode eEF1A genes characterized to date. The coding sequences were also compared with other eEF1A cDNAs from 11 different nematodes to determine the variability of these genes within the phylum Nematoda. Parsimony and distance trees yielded similar topologies, which were similar to those created using other molecular markers. The presence of more than one copy of the eEF1A gene with nearly identical coding regions makes it difficult to define the orthologous cDNAs. As shown by our data on O. tipulae, careful and extensive examination of intron positions in the eEF1A gene across the phylum is necessary to define their potential for use as valid phylogenetic markers.
Resumo:
Radial glia in the developing optic tectum express the key guidance molecules responsible for topographic targeting of retinal axons. However, the extent to which the radial glia are themselves influenced by retinal inputs and visual experience remains unknown. Using multiphoton live imaging of radial glia in the optic tectum of intact Xenopus laevis tadpoles in conjunction with manipulations of neural activity and sensory stimuli, radial glia were observed to exhibit spontaneous calcium transients that were modulated by visual stimulation. Structurally, radial glia extended and retracted many filopodial processes within the tectal neuropil over minutes. These processes interacted with retinotectal synapses and their motility was modulated by nitric oxide (NO) signaling downstream of neuronal NMDA receptor (NMDAR) activation and visual stimulation. These findings provide the first in vivo demonstration that radial glia actively respond both structurally and functionally to neural activity, via NMDAR-dependent NO release during the period of retinal axon ingrowth.
Resumo:
RNA binding proteins regulate gene expression at the posttranscriptional level and play important roles in embryonic development. Here, we report the cloning and expression of Samba, a Xenopus hnRNP that is maternally expressed and persists at least until tail bud stages. During gastrula stages, Samba is enriched in the dorsal regions. Subsequently, its expression is elevated only in neural and neural crest tissues. In the latter, Samba expression overlaps with that of Slug in migratory neural crest cells. Thereafter, Samba is maintained in the neural crest derivatives, as well as other neural tissues, including the anterior and posterior neural tube and the eyes. Overexpression of Samba in the animal pole leads to defects in neural crest migration and cranial cartilage development. Thus, Samba encodes a Xenopus hnRNP that is expressed early in neural and neural crest derivatives and may regulate crest cells migratory behavior. Developmental Dynamics 238:204-209, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Melatonin (MEL) acts as a powerful scavenger of free radicals and direct gonadal responses to melatonin have been reported in the literature. Few studies, however, have evaluated the effect of MEL during in vitro maturation (IVM) on bovine embryos. This study tested the addition of MEL to maturation medium (MM) with no gonadotropins on nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos. Cumulus-oocyte complexes were aspirated from abattoir ovaries and cultured in MM (TCM-199 medium supplemented with 10% fetal calf serum - FCS) at 39ºC and 5% CO2 in air. After 24 hours of culture in MM with 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH; 10-9 M MEL) or 10-9 M MEL, 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH, the oocytes were stained with Hoechst 33342 to evaluate nuclear maturation rate. After in vitro fertilization and embryo culture, development rates were evaluated and the blastocysts were assessed for DNA damage by Comet assay. There was no effect of melatonin added to the MM, alone or in combination with gonadotropins, on nuclear maturation, cleavage and blastocyst rates. These rates ranged between 88% to 90%, 85% to 88% and 42% to 46%, respectively. The extent of DNA damage in embryos was also not affected by MEL supplementation during IVM. The addition of 10-9 M MEL to the MM failed to improve nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos, but was able to properly substitute for gonadotropins during IVM.
Resumo:
Introduction: In women showing impaired fertility, a decreased response to ovarian stimulation is a major problem, limiting the number of oocytes to be used for assisted reproduction techniques (ART). Despite the several definitions of poor response, it is still a matter of debate whether young poor responder patients also show a decrease in oocyte quality. The objective in this study was to investigate whether poor ovarian response to the superstimulation protocol is accompanied by impaired oocyte quality. Material and methods: This study included 313 patients younger than 35 years old, undergoing intracytoplasmic sperm injection. Patients with four or fewer MII oocytes (poor-responder group, PR, n = 57) were age-matched with normoresponder patients (NR, n = 256). Results: A higher rate of oocyte retrieval and a trend towards an increase in MII oocyte rate were observed in the NR group when compared to the PR group (71.6 +/- 1.1% and 74.1 +/- 1.0% vs. 56.3 +/- 2.9% and 66.5 +/- 3.7%; p < 0.0001 and p = 0.056, respectively). A trend toward increased implantation rates was observed in the NR group when compared to the PR group (44 and 24.5 +/- 2.0% vs. 28.8 and 16.4 +/- 3.9%; p = 0.0305 and p = 0.0651, respectively). Conclusions: Low response to ovarian stimulation is apparently not related to impaired oocyte quality. However, embryos produced from poor responder oocytes show impaired capacity to implant and to carry a pregnancy to term.
Resumo:
Background: Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results: 8489 transcripts were detected across the two oocyte groups, of which similar to 25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of a-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion: Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology.
Resumo:
Objective: To evaluate influences of vitrification and warming of metaphase II (MII) mouse oocytes on survival, spindle dynamics. spindle morphology, and chromatin alignment on metaphase plates. Design: Experimental animal Study. Setting: University animal laboratory. Animal(s): Eight-week-old B6D2F1 mice. Intervention(s): Denuded MII oocytes were used fresh (control), exposed to vitrification/warming solutions (Sol Expos), or vitrified and warmed (Vitr). Main Outcome Measure(s): Oocyte recovery and survival after warming and the influence of solution exposure and cryopreservation on spindle dynamics and chromatin alignment. Result(s): Cryopreservation of two or 10 oocytes per straw resulted in recovery (100% +/- 0% and 95% +/- 4%, respectively; mean SE) and survival (95% 2% and 98% 2%, respectively). Immediately after warming (Vitr), significantly fewer oocytes assessed with immunocytochemistry contained spindles, compared with control and Sol Expos. When oocytes were placed into a 3 degrees 7C environment for 2 hours after exposure or warming, the ability to recognize spindles by immunocytochemistry was not significantly different between groups. Using live-cell time-lapse imaging with LC-Polscope, similar time-dependent spindle formation dynamics were observed. At 2 hours after collection or treatment, spindle morphology and length were not significantly different between the groups, nor was the incidence of aberrant alignment of chromatin on metaphase plates. Conclusion(s): Immediately after warming of vitrified MII oocytes, beta-tubulin is depolymerized and chromatin remains condensed on the metaphase plate. Within a 2-hour period, beta-tubulin repolymerizes, forming morphologically normal metaphase spindles with properly aligned chromatin.
Resumo:
Objective: To compare cryopreservation of mature human oocytes with slow-rate freezing and vitrification and determine which is most efficient at establishing a pregnancy. Design: Prospective randomized. Setting: Academically affiliated, private fertility center. Patient(s): Consenting patients with concerns about embryo cryopreservation and more than nine mature oocytes at retrieval were randomized to slow-rate freezing or vitrification of supernumerary (more than nine) oocytes. Intervention(s): Oocytes were frozen or vitrified, and upon request oocytes were thawed or warmed, respectively. Main Outcome Measure(s): Oocyte survival, fertilization, embryo development, and clinical pregnancy. Result(s): Patient use has resulted in 30 thaws and 48 warmings. Women`s age at time of cryopreservation was similar. Oocyte survival was significantly higher following vitrification/warming (81%) compared with freezing/thawing (67%). Fertilization was more successful in oocytes vitrified/warmed compared with frozen/thawed. Fertilized oocytes from vitrification/warming had significantly better cleavage rates (84%) compared with freezing/thawing (71%) and resulted in embryos with significantly better morphology. Although similar numbers of embryos were transferred, embryos resulting from vitrified oocytes had significantly enhanced clinical (38%) pregnancy rates compared with embryos resulting from frozen oocyte (13%). Miscarriage and/or spontaneous abortion rates were similar. Conclusion(s): Our results suggest that vitrification/warming is currently the most efficient means of oocyte cryopreservation in relation to subsequent success in establishing pregnancy. (Fertil Steril (R) 2010; 94: 2088-95. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Objective: To assess the impact of the mean oocyte diameter (MOD) on occurrence of fertilization and embryo quality in assisted reproduction cycles. Design: Prospective observational study. Setting: Sector of Human Reproduction of the University Hospital, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (HCFMRP-USP). Patient(s): Thirty-five women undergoing intracytoplasmic sperm injection (ICSI) at the University Hospital of Ribeirao Preto from May to October 2007. Intervention(s): MOD assessment. Main Outcome Measure(s): Occurrence of fertilization and qualitative embryo classification on 2nd and 3rd day after ICSI. Result(s): We divided 160 metaphase II oocytes according to MOD into groups A (MOD below the 25th percentile), B (MOD between 25th and 75th percentile), and C (MOD above the 75th percentile). There was no statistically significant association between MOD and the occurrence of fertilization or the qualitative embryo classification on days 2 and 3. There was no statistically significant difference between groups regarding number of cells or the qualitative embryo classification on days 2 and 3. Conclusion(s): The MOD of mature oocytes does not seem to be related to the occurrence of fertilization or to the developmental quality of human embryos on days 2 and 3 after ICSI. (Fertil Steril(R) 2010;93:621-5. (C)2010 by American Society for Reproductive Medicine.)
Resumo:
Success in oocyte cryopreservation is limited and several factors as cryoprotectant type or concentration and stage of oocyte meiotic maturation are involved. The aim of the present study was to evaluate the effect of maturation stage and ethylene glycol (EG) concentration on survival of bovine oocytes after vitrification. In experiment 1, kinetics of oocyte in vitro maturation (IVM) was evaluated. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), and metaphase II (MII) oocytes were found predominantly at 0, 0-10, 10-14, and 18-24 h of INK respectively. In experiment 2, in vitro embryo development after in vitro fertilization (IVF) of oocytes exposed to equilibrium (ES) and vitrification solution VS-1 (EG 30%), or VS-2 (EG 40%) at 0, 12 or 18 It of IVM was evaluated. Only blastocyst rate from oocytes vitrified in SV-2 after 18 h of IVM was different from control oocytes. Hatched blastocyst rates from oocytes vitrified in VS-1 after 12 and 18 h, and SV-2 after 18 h of IVM were different from unvitrified oocytes. In experiment 3, embryo development was examined after IVF of oocytes vitrified using VS-I or VS-2 at 0, 12 or 18 h of IVM. Rates of blastocyst development after vitrification of oocytes in VS-1 at each time interval were similar. However, after vitrification in VS-2, blastocyst rates were less at 18 h than 0 h. Both cleavage rates and blastocyst rates were significantly less in all vitrification groups when compared to control group and only control oocytes hatched. In conclusion, both EG concentration and stage of meiotic maturation affect the developmental potential of oocytes after vitrification. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present study was conducted to determine the affect of pre-treating of oocytes and/or sperm with a rabbit polyclonal antibody against recombinant cattle lipocalin type prostaglandin D synthase (alpha L-PGDS) on in vitro sperm-oocyte binding and fertilization. In vitro matured cattle oocytes were incubated (39 degrees C, 5% CO2 in air) for I It in the following treatments either 500 mu L of fertilization medium (FM) or FM with alpha L-PGDS (1:2000). Frozen-thawed spermatozoa were washed by a 45/90% layered Percoll gradient centrifugation and incubated for I h either FM or FM with a L-PGDS. This study utilized five different treatments: (1) no antibody (control); (2) a rabbit IgG against a non-bovine antigen, bacterial histidase (alpha-hist); (3) a L-PGDS at fertilization time (with fertilization medium); (4) alpha L-PGDS-treated oocytes; or (5) a L-PGDS-treated sperm. Pre-treated oocytes were incubated with 10 X 10(4) washed spermatozoa per 25 oocytes. Oocytes used to assess sperm binding were stained with Hoescht 33342, and the number of sperm bound per zonae pellucidae counted. The remaining oocytes were fixed in acid alcohol, stained with 1% acetate-orcein and observed to determine the presence of pronuclei. More sperm bound to the zonae pellucidae when oocytes and/or sperm were pre-treated with alpha. L-PGDS: (1) 26.4 +/- 3.0; (2) 25.6 +/- 3.0; (3) 59.7 +/- 3.0; (4) 56.4 +/- 3.0; and (5) 57.1 +/- 3.0. Addition of alpha L-PGDS with sperm, oocytes, or both, decreased fertilization (P < 0.05) compared with the control: (1) 89.2 +/- 2.0%; (2) 87.5 +/- 2.0%; (3) 19.4 +/- 2.0%; (4) 27.2 +/- 3.1%; and (5) 14.1 +/- 3.4%. The alpha L-PGDS reacts with both oocytes and spermatozoa, resulting in increases of in vitro sperm-oocyte binding and inhibition of fertilization. These observations suggest that L-PGDS may have a role in cattle fertilization. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n = 36 and 34, respectively), peak-lactation (PL; n = 37 and 32, respectively), and RB (n = 36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H = 51.7% +/- 4.5 (n = 375), PL = 37.9% +/- 5.1 (n = 390), RB = 41.9% +/- 4.5 (n = 666)], blastocyst rate was compromised by HS, especially in RB cows [H = 30.3% +/- 4.8 (n = 244) vs. 23.3% +/- 6.4 (n = 150), PL = 22.0% +/- 4.7 (n = 191) vs. 14.6% +/- 7.6 (n = 103), RB = 22.5% +/- 5.4 (n = 413) vs. 7.9% +/- 4.3 (n = 177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% +/- 0.7 (n = 14) vs. 2.2% +/- 0.2 (n = 78)] and other groups [H = 2.5% +/- 0.7 (n = 13), and PL = 2.7% +/- 0.6 (n = 14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS.