7 resultados para William -- 1564-1616 -- Musical settings
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
SEVERAL MODELS OF TIME ESTIMATION HAVE BEEN developed in psychology; a few have been applied to music. In the present study, we assess the influence of the distances travelled through pitch space on retrospective time estimation. Participants listened to an isochronous chord sequence of 20-s duration. They were unexpectedly asked to reproduce the time interval of the sequence. The harmonic structure of the stimulus was manipulated so that the sequence either remained in the same key (CC) or travelled through a closely related key (CFC) or distant key (CGbC). Estimated times were shortened when the sequence modulated to a very distant key. This finding is discussed in light of Lerdahl's Tonal Pitch Space Theory (2001), Firmino and Bueno's Expected Development Fraction Model (in press), and models of time estimation.
Resumo:
Online music databases have increased significantly as a consequence of the rapid growth of the Internet and digital audio, requiring the development of faster and more efficient tools for music content analysis. Musical genres are widely used to organize music collections. In this paper, the problem of automatic single and multi-label music genre classification is addressed by exploring rhythm-based features obtained from a respective complex network representation. A Markov model is built in order to analyse the temporal sequence of rhythmic notation events. Feature analysis is performed by using two multi-variate statistical approaches: principal components analysis (unsupervised) and linear discriminant analysis (supervised). Similarly, two classifiers are applied in order to identify the category of rhythms: parametric Bayesian classifier under the Gaussian hypothesis (supervised) and agglomerative hierarchical clustering (unsupervised). Qualitative results obtained by using the kappa coefficient and the obtained clusters corroborated the effectiveness of the proposed method.
Resumo:
This work proposes an association between musical analysis techniques developed during the twentieth and the twenty-first centuries, presented by authors like Felix Salzer and Joseph Straus, and the musical theory concepts presented by Olivier Messiaen, for the analysis of Prelude n(o) 1, La Colombe. The analysis contributes to broaden the theory concepts presented by the composer. In the Conclusion we trace lines of an authorial sonority by Olivier Messiaen.
Resumo:
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
Resumo:
Background. The functional haemodynamic variables pulse pressure variation (PPV), stroke volume variation (SVV), and systolic pressure variation (SPV) are widely used to assess haemodynamic status. However, it is not known how these perform during acute lung injury (ALI). This study evaluated the effects of different ventilatory strategies on haemodynamic parameters in pigs with ALI during normovolaemia and hypovolaemia. Methods. Eight anaesthetized Agroceres pigs [40 (1.9) kg] were instrumented with pulmonary artery, PiCCO, and arterial catheters and ventilated. Three ventilatory settings were randomly assigned for 10 min each: tidal volume (VT) 15 ml kg(-1) and PEEP 5 cm H(2)O, VT 8 ml kg(-1) and PEEP 13 cm H(2)O, or VT 6 ml kg(-1) and PEEP 13 cm H(2)O. Data were collected at each setting at baseline, after ALI (lung lavage+Tween 1.5%), and ALI with hypovolaemia (haemorrhage to 30% of estimated blood volume). Results. At baseline, high VT increased PPV, SVV, and SPV (P < 0.05 for all). During ALI, high VT significantly increased PPV and SVV [(P = 0.002 and P = 0.008) respectively.]. After ALI with hypovolaemia, ventilation at VT 6 ml kg(-1) and PEEP 13 cm H(2)O decreased the accuracy of functional haemodynamic variables to predict hypovolaemia, with the exception of PPV (area under the curve 0.875). The parameters obtained by PiCCO were less influenced by ventilatory changes. Conclusions. VT is the ventilatory parameter which influences functional haemodynamics the most. During ventilation with low VT and high PEEP, most functional variables are less able to accurately predict hypovolaemia secondary to haemorrhage, with the exception of PPV.
Resumo:
Background and objective The influence of ventilatory settings on static and functional haemodynamic parameters during mechanical ventilation is not completely known. The purpose of this study was to evaluate the effect of positive end-expiratory pressure, tidal volume and inspiratory to expiratory time ratio variations on haemodynamic parameters during haemorrhage and after transfusion of shed blood. Methods Ten anaesthetized pigs were instrumented and mechanically ventilated with a tidal volume of 8 ml kg(-1), a positive end-expiratory pressure of 5 cmH(2)O and an inspiratory to expiratory ratio of 1 : 2. Then, they were submitted in a random order to different ventilatory settings (tidal volume 16 ml kg(-1), positive end-expiratory pressure 15 cmH(2)O or inspiratory to expiratory time ratio 2: 1). Functional and static haemodynamic parameters (central venous pressure, pulmonary artery occlusion pressure, right ventricular end-diastolic volume and pulse pressure variation) were evaluated at baseline, during hypovolaemia (withdrawal of 20% of estimated blood volume) and after an infusion of withdrawn blood (posttransfusion). Results During baseline, a positive end-expiratory pressure of 15cmH(2)O significantly increased pulmonary artery occlusion pressure from 14.6 +/- 1.6 mmHg to 17.4 +/- 1.7 mmHg (P<0.001) and pulse pressure variation from 15.8 +/- 8.5% to 25.3 +/- 9.5% (P<0.001). High tidal volume increased pulse pressure variation from 15.8 8.5% to 31.6 +/- 10.4% (P<0.001), and an inspiratory to expiratory time ratio of 2: 1 significantly increased only central venous pressure. During hypovolaemia, high positive end-expiratory pressure influenced all studied variables, and high tidal volume strongly increased pulse pressure variation (40.5 +/- 12.4% pre vs. 84.2 +/- 19.1 % post, P<0.001). The inversion of the inspiratory to expiratory time ratio only slightly increased filling pressures during hypovolaemia, without without affecting pulse pressure variation or right ventricle end-diastolic volume. Conclusion We concluded that pulse pressure variation measurement is influenced by cyclic variations in intrathoracic pressure, such as those caused by augmentations in tidal volume. The increase in mean airway pressure caused by positive end-expiratory pressure affects cardiac filling pressures and also pulse pressure variation, although to a lesser extent. Inversion of the inspiratory to expiratory time ratio does not induce significant changes in static and functional haemodynamic parameters. Eur J Anaesthesiol 26:66-72 (c) 2009 European Society of Anaesthesiology.