11 resultados para Whole rock

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Guarguaraz Complex, in western Argentina, comprises a metasedimentary assemblage, associated with mafic sills and ultramafic bodies intruded by basaltic dikes, which are interpreted as Ordovician dismembered ophiolites. Two kinds of dikes are recognized, a group associated with the metasediments and the other ophiolite-related. Both have N-MORB signatures, with epsilon(Nd) between +3.5 and +8.2, indicating a depleted source, and Grenville model ages between 0.99 and 1.62 Ga. A whole-rock Sm-Nd isochron yielded an age of 655 +/- 76 Ma for these mafic rocks, which is compatible with cianobacteria and acritarchae recognized in the clastic metasedimentary platform sequences, that indicate a Neoproterozoic (Vendian)-Cambrian age of deposition. The Guarguaraz metasedimentary-ophiolitic complex represents, therefore, a remnant of an oceanic basin developed to the west of the Grenville-aged Cuyania terrane during the Neoproterozoic. The southernmost extension of these metasedimentary sequences in Cordon del Portillo might represent part of this platform and not fragments of the Chilenia terrane. An extensional event related to the fragmentation of Rodinia is represented by the mafic and ultramafic rocks. The Devonian docking of Chilenia emplaced remnants of ocean floor and slices of the Cuyania terrane (Las Yaretas Gneisses) in tectonic contact with the Neoproterozoic metasediments, marking the Devonian western border of Gondwana. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over 20 lamprophyre dykes, varying in width between a few centimeters and several meters, have been identified in central Sierra Norte - Eastern Pampean Ranges, Cordoba, Argentina. Their mineralogy and chemistry indicate that they are part of the calc-alkaline lamprophyres clan (CAL). They contain phenocrysts of magnesiohomblende +/- augite set in a groundmass of magnesiohornblende, calcic-plagioclase, alkali feldspar, and opaque minerals, which designate them as spessartite-type lamprophyres. Alteration products include chlorite, calcite and iron oxides after malfic phenocrysts, though some are partially replaced by actinolite. Feldspars are replaced by carbonate and clay minerals. The dykes are relatively primitive, and show restricted major element variation (SiO(2) 51.1-55.3 wt.%, Al(2)O(3) 12-16.6 wt.%, total alkalies 1.5-4.7 wt.%), high Mg# (55-77), high Cr contents (27-988 ppm) and moderate to high Ni contents (60-190 ppm). Lamprophyre LILE (e.g. Rb averages 110 ppm, Sr 211-387 ppm, Ba 203-452 ppm) are high relative to HFSE (e.g., Ta 0.2-1.6 ppm, Nb 4-11 ppm, Y 17-21 ppm), and are enriched in LREE (30-70 times chondrite). They are characterized by relatively high (208)Pb/(204)Pb (38.8-39.9), (207)Pb/(204)Pb(similar to 15.7), and (206)Pb/(204)Pb (18.7-20.1), combined with low (epsilon)epsilon(Nd) (-4.69 to -1.52) and a relative moderately high ((87)Sr/(86)Sr)(i) of 0.7055-0.7074. The Rb-Sr whole rock isochron indicates an Early Ordovician age of 485 +/- 25 Ma. The calculated T(DM) (1.7 Ga) suggests that these rocks appear to have originated from a reservoir that was created during a mantle metasomatism event related to the Pampean orogeny. The Sierra Norte lamprophyres show affinities with a subduction-related magma in an active continental margin. Their geochemical and isotopic features suggest a multicomponent source, composed of enriched mantle material variably contaminated by crustal components. The lamprophyric suite emplacement occurred at the dawning stage of the Pampean orogeny, in a regional post-collisional extensional setting developed in the Sierra Norte-Ambargasta batholith (SNAB) in Early Ordovician times. (C) 2008 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basement in the `Altiplano` high plateau of the Andes of northern Chile mostly consists of late Paleozoic to Early Triassic felsic igneous rocks (Collahuasi Group) that were emplaced and extruded along the western margin of the Gondwana supercontinent. This igneous Suite crops out in the Collalluasi area and forms the backbone of most of the high Andes from latitude 20 degrees to 22 degrees S. Rocks of the Collahuasi Group and correlative formations form art extensive belt of volcanic and subvolcanic rocks throughout the main Andes of Chile, the Frontal Cordillera of Argentina (Choiyoi Group or Choiyoi Granite-Rhyolite Province), and the Eastern Cordillera of Peru. Thirteen new SHRIMP U-Pb zircon ages from the Collahuasi area document a bimodal timing for magnatism, with a dominant peak at about 300 Ma and a less significant one at 244 Ma. Copper-Mo porphyry mineralization is related to the younger igneous event. Initial Hf isotopic ratios for the similar to 300 Ma zircons range from about -2 to +6 indicating that the magmas incorporated components with a significant crustal residence time. The 244 Ma magmas were derived from a less enriched source, with the initial HT values ranging from +2 to +6, suggestive of a mixture with a more depleted component. Limited whole rock (144)Nd/(143)Nd and (87)Sr/(86)Sr isotopic ratios further support the likelihood that the Collahuasi Group magmatism incorporated significant older crustal components, or at least a mixture of crustal sources with more and less evolved isotopic signatures. (C) 2007 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integrated whole-rock petrographic and geochemical study has been carried out on kamafugites and kimberlites of the Late Cretaceous Alto Paranaiba igneous province, in Brazil, and their main minerals, olivine, clinopyroxene, perovskite, phlogopite, spinels and ilmenite. Perovskite is by far the dominant repository for light lanthanides, Nb, Ta, Th and U, and occasionally other elements, reaching concentrations up to 3.4 x 10(4) chondrite values for light lanthanides and 105 chondrite for Th. A very strong fractionation between light and heavy lanthanides (chondrite-normalized La/Yb from similar to 175 to similar to 2000) is also observed. This is likely the first comprehensive dataset on natural perovskite. Clinopyroxene has variable trace-element contents. likely due to the different position of this phase in the crystallization sequence; Sc reaches values as high as 200 ppm whereas the lanthanides show very variable enrichment in light over heavy REE, and commonly show a negative Eu anomaly. The olivine, phlogopite (and tetra-ferriphlogopite), Cr-Ti oxide and ilmenite are substantially barren minerals for lanthanides and most other trace elements, with the exception of Ba, Cs and Rb in mica, and V, Nb and Ta in ilmenite. Estimated mineral/whole-rock partition coefficients for lanthanides in perovskite are similar to previous determinations, though much higher than those calculated in experiments with synthetic compositions, testifying once more to the complex behavior of these elements in a natural environment. The enormous potential for exploitation of lanthanides, Th, U and high-field-strength elements in the Brazilian kamafugites, kimberlites and related rocks is clearly shown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Early Paleozoic geodynamic evolution in SW Iberia is believed to have been dominated by the opening of the Rheic Ocean. The Rheic Ocean is generally accepted to have resulted from the drift of peri-Gondwanan terranes such as Avalonia from the northern margin of Gondwana during Late Cambrian-Early Ordovician times. The closure of the Rheic Ocean was the final result of a continent-continent collision between Gondwana and Laurussia that produced the Variscan orogen. The Ossa-Morena Zone is a peri-Gondwana terrane, which preserves spread fragments of ophiolites - the Internal Ossa-Morena Zones Ophiolite Sequences (IOMZOS). The final patchwork of the IOMZOS shows a complete oceanic lithospheric sequence with geochemical characteristics similar to the ocean-floor basalts, without any orogenic fingerprint and/or crustal contamination. The IOMZOS were obducted and imbricated with high pressure lithologies. Based on structural, petrological and whole-rock geochemical data, the authors argue that the IOMZOS represent fragments of the oceanic lithosphere from the Rheic Ocean. Zircon SHRIMP U-Pb geochronological data on metagabbros point to an age of ca. 480 Ma for IOMZOS, providing evidence of a well-developed ocean in SW Iberia during this period, reinforcing the interpretation of the Rheic Ocean as a wide ocean among the peri-Gondwanan terranes during Early Ordovician times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trace element and isotopic data obtained for mantle spinel Iherzolites and diorite dykes from the Baldissero massif (Ivrea-Verbano Zone, Western Italy) provide new, valuable constraints on the petrologic and geodynamic evolution of the Southern Alps in Paleozoic to Mesozoic times. Whole rock and mineral chemistry indicates that Baldissero Iherzolites can be regarded as refractory mantle residues following limited melt extraction. In particular, the Light Rare Earth Elements (LREE)-depleted and fractionated compositions of whole rock and clinopyroxene closely match modelling results for refractory residues after low degrees (similar to 4-5%) of near-fractional melting of depleted mantle, possibly under garnet-facies conditions. Following this, the peridotite sequence experienced subsolidus re-equilibration at lithospheric spinel-facies conditions and intrusion of several generations of dykes. However, Iherzolites far from dykes show very modest metasomatic changes, as evidenced by the crystallisation of accessory titanian pargasite and the occurrence of very slight enrichments in highly incompatible trace elements (e.g. Nb). The Re-Os data for Iherzolites far from the dykes yield a 376 Ma (Upper Devonian) model age that is considered to record a partial melting event related to the Variscan orogenic cycle s.l. Dioritic dykes cutting the mantle sequence have whole rock, clinopyroxene and plagioclase characterised by high radiogenic Nd and low radiogenic Sr, which point to a depleted to slightly enriched mantle source. Whole rock and mafic phases of diorites have high Mg# values that positively correlate with the incompatible trace element concentrations. The peridotite at the dyke contact is enriched in orthopyroxene, iron and incompatible trace elements with respect to the Iherzolites far from dykes. Numerical simulations indicate that the geochemical characteristics of the diorites can be explained by flow of a hydrous, silica-saturated melt accompanied by reaction with the ambient peridotite and fractional crystallisation. The composition of the more primitive melts calculated in equilibrium with the diorite minerals show tholeiitic to transitional affinity. Internal Sm-Nd, three-point isochrons obtained for two dykes suggest an Upper Triassic-Lower Jurassic emplacement age (from 204 31 to 198 29 Ma). Mesozoic igneous events are unknown in the southern Ivrea-Verbano Zone (IVZ), but the intrusion of hydrous melts, mostly silica-saturated, have been well documented in the Finero region, i.e. the northernmost part of IVZ and Triassic magmatism with calc-alkaline to shoshonitic affinity is abundant throughout the Central-Eastern Alps. The geochemical and chronological features of the Baldissero diorites shed new light on the geodynamic evolution of the Southern Alps before the opening of the Jurassic Tethys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Turkestanite, a rare Th- and REE-bearing cyclosilicate in the ekanite-steacyite group was found in evolved peralkaline granites from the Morro Redondo Complex, south Brazil. It occurs with quartz, alkali feldspar and an unnamed Y-bearing silicate. Electron microprobe analysis indicates relatively homogeneous compositions with maximum ThO(2), Na(2)O and K(2)O contents of 22.4%, 2.93% and 3.15 wt.%, respectively, and significant REE(2)O(3) abundances (5.21 to 11.04 wt.%). The REE patterns show enrichment of LREE over HREE, a strong negative Eu anomaly and positive Ce anomaly, the latter in the most transformed crystals. Laser ablation inductively coupled plasma mass spectrometry trace element patterns display considerable depletions in Nb, Zr, Hf, Ti and Li relative to whole-rock sample compositions. Observed compositional variations suggest the influence of coupled substitution mechanisms involving steacyite, a Na-dominant analogue of turkestanite, iraqite, a REE-bearing end-member in the ekanite-steacyite group, ekanite and some theoretical end-members. Turkestanite crystals were interpreted as having precipitated during post-magmatic stages in the presence of residual HFSE-rich fluids carrying Ca, the circulation of which was enhanced by deformational events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Rio Apa cratonic fragment crops out in Mato Grosso do Sul State of Brazil and in northeastern Paraguay. It comprises Paleo-Mesoproterozoic medium grade metamorphic rocks, intruded by granitic rocks, and is covered by the Neoproterozoic deposits of the Corumbi and Itapocurni Groups. Eastward it is bound by the southern portion of the Paraguay belt. In this work, more than 100 isotopic determinations, including U-Pb SHRIMP zircon ages, Rb-Sr and Sm-Nd whole-rock determinations, as well as K-Ar and Ar-Ar mineral ages, were reassessed in order to obtain a complete picture of its regional geological history. The tectonic evolution of the Rio Apa Craton starts with the formation of a series of magmatic arc complexes. The oldest U-Pb SHRIMP zircon age comes from a banded gneiss collected in the northern part of the region, with an age of 1950 +/- 23 Ma. The large granitic intrusion of the Alumiador Batholith yielded a U-Pb zircon age of 1839 +/- 33 Ma, and from the southeastern part of the area two orthogneisses gave zircon U-Pb ages of 1774 +/- 26 Ma and 1721 +/- 25 Ma. These may be coeval with the Alto Terere metamorphic rocks of the northeastern corner, intruded in their turn by the Baia das Garcas granitic rocks, one of them yielding a zircon U-Pb age of 1754 +/- 49 Ma. The original magmatic protoliths of these rocks involved some crustal component, as indicated by the Sm-Nd TDm model ages, between 1.9 and 2.5 Ga. Regional Sr isotopic homogenization, associated with tectonic deformation and medium-grade metamorphism occurred at approximately 1670 Ma, as suggested by Rb-Sr whole rock reference isochrons. Finally, at 1300 Ma ago, the Ar work indicates that the Rio Apa Craton was affected by widespread regional heating, when the temperature probably exceeded 350 degrees C. Geographic distribution, age and isotopic signature of the fithotectonic units suggest the existence of a major suture separating two different tectonic domains, juxtaposed at about 1670 Ma. From that time on, the unified Rio Apa continental block behaved as one coherent and stable tectonic unit. It correlates well with the SW corner of the Amazonian Craton, where the medium-grade rocks of the Juruena-Rio Negro tectonic province, with ages between 1600 and 1780 Ma, were reworked at about 1300 Ma. Looking at the largest scale, the Rio Apa Craton is probably attached to the larger Amazonian Craton, and the actual configuration of southwestern South America is possibly due to a complex arrangement of allochthonous blocks such as the Arequipa, Antofalla and Pampia, with different sizes, that may have originated as disrupted parts of either Laurentia or Amazonia, and were trapped during later collisions of these continental masses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A paleomagnetic study was carried out on the Late Jurassic Sarmiento Ophiolitic Complex (SOC) exposed in the Magallanes fold and thrust belt in the southern Patagonian Andes (southern Chile). This complex, mainly consisting of a thick succession of pillow-lavas, sheeted dikes and gabbros, is a seafloor remnant of the Late Jurassic to Early Cretaceous Rocas Verdes basin that developed along the south-western margin of South America. Stepwise thermal and alternating field demagnetization permitted the isolation of a post-folding characteristic remanence, apparently carried by fine grain (SD?) magnetite, both in the pillow-lavas and dikes. The mean ""in situ"" direction for the SOC is Dec: 286.9 degrees, Inc: -58.5 degrees, alpha-95: 6.9 degrees, N: 11 (sites). Rock magnetic properties, petrography and whole-rock K-Ar ages in the same rocks are interpreted as evidence of correlation between remanence acquisition and a greenschist facies metamorphic overprint that must have occurred during latest stages or after closure and tectonic inversion of the basin in the Late Cretaceous. The mean remanence direction is anomalous relative to the expected Late Cretaceous direction from stable South America. Particularly, a declination anomaly over 50 degrees is suggestively similar to paleomagnetically interpreted counter clockwise rotations found in thrust slices of the Jurassic El Quemado Fm. located over 100 km north of the study area in Argentina. Nevertheless, a significant ccw rotation of the whole SOC is difficult to reconcile with geologic evidence and paleogeographic models that suggest a narrow back-arc basin sub-parallel to the continental margin. A rigid-body 30 degrees westward tilting of the SOC block around a horizontal axis trending NNW, is considered a much simpler explanation, being consistent with geologic evidence. This may have occurred as a consequence of inverse reactivation of old normal faults, which limit both the SOC exposures and the Cordillera Sarmiento to the East. The age of tilting is unknown but it must postdate remanence acquisition in the Late Cretaceous. Two major orogenic events of the southern Patagonian Andes, in the Eocene (ca. 42 Ma) and Middle Miocene (ca. 12 Ma), respectively, could have caused the proposed tilting. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The metamorphosed banded iron formation from the Nogoli Metamorphic Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogoli area, 32 degrees 55`S-66 degrees 15`W) is classified as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole rock geochemical features. The origin of banded iron formation is mainly related to chemical precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with significant dilution by maficultramafic volcanic and siliciclastic materials. Multi-stage T(DM) model ages of 1670, 1854 and 1939 Ma and positive, mantle-like xi Nd((1502)) values of +3.8, +1.5 and +0.5 from the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of Nogoli Metamorphic Complex, which are between 1679 and 1765 Ma and +2.64 and +3.68, respectively. This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous Sm-Nd whole rock isochron of similar to 1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the banded iron formation, with three distinctive trajectories: (1) Relict prograde M(1)-M(3) segment with gradual P and T increase from greenschist facies at M(1) to amphibolite facies at M(3). (2) Peak P-T conditions at high amphibolite-low granulite facies during M(4). (3) Retrograde counterpart of M(4), that returns from amphibolite facies and stabilizes at greenschist facies during M(5). Each trajectory may be regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 and 3) orogenies, during the Early to Middle Paleozoic. The Nogoli Metamorphic Complex is interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. (C) 2009 Elsevier Ltd. All rights reserved.