4 resultados para Wharton Jelly
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A new species of cubozoan jellyfish has been discovered in shallow waters of Bonaire, Netherlands ( Dutch Caribbean). Thus far, approximately 50 sightings of the species, known commonly as the Bonaire banded box jelly, are recorded, and three specimens have been collected. Three physical encounters between humans and the species have been reported. Available evidence suggests that a serious sting is inflicted by this medusa. To increase awareness of the scientific disciplines of systematics and taxonomy, the public has been involved in naming this new species. The Bonaire banded box jelly, Tamoya ohboya, n. sp., can be distinguished from its close relatives T. haplonema from Brazil and T. sp. from the southeastern United States by differences in tentacle coloration, cnidome, and mitochondrial gene sequences. Tamoya ohboya n. sp. possesses striking dark brown to reddish-orange banded tentacles, nematocyst warts that densely cover the animal, and a deep stomach. We provide a detailed comparison of nematocyst data from Tamoya ohboya n. sp., T. haplonema from Brazil, and T. sp. from the Gulf of Mexico.
Resumo:
The goal of this prospective randomized clinical trial was to compare 2 cohorts of standardized cleft patients with regard to functional speech outcome and the presence or absence of palatal fistulae. The 2 cohorts are randomized to undergo either a conventional von Langenbeck repair with intravelar velarplasty or the double-opposing Z-plasty Furlow procedure. A prospective 2 x 2 x 2 factorial clinical trial was used in which each subject was randomly assigned to 1 of 8 different groups: 1 of 2 different lip repairs (Spina vs. Millard), 1 of 2 different palatal repair (von Langenbeck vs. Furlow), and 1 of 2 different ages at time of palatal surgery (9-12 months vs. 15-18 months). All surgeries were performed by the same 4 surgeons. A cul-de-sac test of hypernasality and a mirror test of nasal air emission were selected as primary outcome measures for velopharyngeal function. Both a surgeon and speech pathologist examined patients for the presence of palatal fistulae. In this study, the Furlow double-opposing Z-palatoplasty resulted in significantly better velopharyngeal function for speech than the von Langenbeck procedure as determined by the perceptual cul-de-sac test of hypernasality. Fistula occurrence was significantly higher for the Furlow procedure than for the von Langenbeck. Fistulas were more likely to occur in patients with wider clefts and when relaxing incisions were not used.
Resumo:
In metazoans, bone morphogenetic proteins (BMPS) direct a myriad of developmental and adult homeostatic evens through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like. Kinasel and -2 (ALK1/ACVR1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp(+). In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sat mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by sax(P), a viable allele previously reported to be mill, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first: class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVR1-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.
Resumo:
Leptospixosis, a spirochaetal zoonotic disease caused by Leptospira, has been recognized as an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospires, where it accounts for up to 75% of the total outer membrane proteins. It is highly immunogenic, and recent studies have implicated LipL32 as an extracellular matrix binding protein, interacting with collagens, fibronectin, and laminin. In order to better understand the biological role and the structural requirements for the function of this important lipoprotein, we have determined the 2.25-angstrom-resolution structure of recombinant LipL32 protein corresponding to residues 21-272 of the wild-type protein (LipL32(21-272)). The LipL32(21-272) monomer is made of a jelly-roll fold core from which several peripheral secondary structures protrude. LipL32(21-272) is structurally similar to several other jelly-roll proteins, some of which bind calcium ions and extracellular matrix proteins. Indeed, spectroscopic data (circular dichroism, intrinsic tryptophan fluorescence, and extrinsic 1-amino-2-naphthol-4-sulfonic acid fluorescence) confirmed the calcium-binding properties of LipL32(21-272). Ca(2+) binding resulted in a significant increase in the thermal stability of the protein, and binding was specific for Ca(2+) as no structural or stability perturbations were observed for Mg(2+), Zn(2+), or Cu(2+). Careful examination of the crystal lographic structure suggests the locations of putative regions that could mediate Ca(2+) binding as well as binding to other interacting host proteins, such as collagens, fibronectin, and lamixidn. (C) 2009 Elsevier Ltd. All rights reserved.