4 resultados para West Nile fever
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Nucleotide sequences of two regions of the genomes of 11 yellow fever virus (YFV) samples isolated from monkeys or humans with symptomatic yellow fever (YF) in Brazil in 2000,2004, and 2008 were determined with the objective of establishing the genotypes and studying the genetic variation. Results of the Bayesian phylogenetic analysis showed that sequences generated from strains from 2004 and 2008 formed a new subclade within the clade 1 of the South American genotype I. The new subgroup is here designated as 1E. Sequences of YFV strains recovered in 2000 belong to the subclade 1D, which comprises previously characterized YFV strains from Brazil. Molecular dating analyses suggested that the new subclade 1E started diversifying from 1D about 1975 and that the most recent 2004-2008 isolates arose about 1985. J. Med. Virol. 82:175-185, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Species of the genus Culex Linnaeus have been incriminated as the main vectors of lymphatic filariases and are important vectors of arboviruses, including West Nile virus. Sequences corresponding to a fragment of 478 bp of the cytochrome c oxidase subunit I gene, which includes part of the barcode region, of 37 individuals of 17 species of genus Culex were generated to establish relationships among five subgenera, Culex, Phenacomyia, Melanoconion, Microculex, and Carrollia, and one species of the genus Lutzia that occurs in Brazil. Bayesian methods were employed for the phylogenetic analyses. Results of sequence comparisons showed that individuals identified as Culex dolosus, Culex mollis, and Culex imitator possess high intraspecific divergence (3.1, 2.3, and 3.5%, respectively) when using the Kimura two parameters model. These differences were associated either with distinct morphological characteristics of the male genitalia or larval and pupal stages, suggesting that these may represent species complexes. The Bayesian topology suggested that the genus and subgenus Culex are paraphyletic relative to Lutzia and Phenacomyia, respectively. The cytochrome c oxidase subunit I sequences may be a useful tool to both estimate phylogenetic relationships and identify morphologically similar species of the genus Culex.
Resumo:
Parity rate, gonotrophic cycle length, and density of a Culex quinquefasciatus female population was estimated at the Parque Ecologico do Tiete (PET), Sao Paulo, Brazil. Adult Cx. quinquefasciatus females were collected from vegetation along the edges of a polluted drainage canal with the use of a battery-powered backpack aspirator from September to November 2005 and from February to April 2006. We examined 255 Cx. quinquefasciatus ovaries to establish the parity rate of 0.22 and determined the gonotrophic cycle length under laboratory conditions to be 3 and 4 days. From these data, we calculated the Cx. quinquefasciatus survival rate to be 0.60 and 0.68 per day. Density of the Cx. quinquefasciatus female (5.71 females per m(2)) was estimated based on a population size of 28,810 individuals divided by the sampled area of 5,040 m(2). Results of all experiments indicate medium survivorship and high density of the Cx. quinquefasciatus female population. This species is epidemiologically relevant in the PET area and should be a target of the vector control program of Sao Paulo municipality.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.