9 resultados para Weather forecasting
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach. the parameter gamma* = Delta H-amor/(Delta H-inter - Delta H-amor) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and Delta H-amor and Delta H-inter are the enthalpies for-lass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The gamma* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the gamma* parameter is applied in the ternary Al-Ni-Y system. The calculated gamma* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite sonic misfitting, the best glass formers are found quite close to the highest gamma* values, leading to the conclusion that this thermodynamic approach can lie extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
In this paper, a comparative analysis of the long-term electric power forecasting methodologies used in some South American countries, is presented. The purpose of this study is to compare and observe if such methodologies have some similarities, and also examine the behavior of the results when they are applied to the Brazilian electric market. The abovementioned power forecasts were performed regarding the main four consumption classes (residential, industrial, commercial and rural) which are responsible for approximately 90% of the national consumption. The tool used in this analysis was the SAS (c) program. The outcome of this study allowed identifying various methodological similarities, mainly those related to the econometric variables used by these methods. This fact strongly conditioned the comparative results obtained.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
This article analysed scenarios for Brazilian consumption of ethanol for the period 2006 to 2012. The results show that if the country`s GDP sustains a 4.6% a year growth, domestic consumption of fuel ethanol could increase to 25.16 billion liters in this period, which is a volume relatively close to the forecasted gasoline consumption of 31 billion liters. At a lower GDP growth of 1.22% a year, gasoline consumption would be reduced and domestic ethanol consumption in Brazil would be no higher than 18.32 billion liters. Contrary to the current situation, forecasts indicated that hydrated ethanol consumption could become much higher than anhydrous consumption in Brazil. The former is being consumed in cars moved exclusively by ethanol and flex-fuel cars, successfully introduced in the country at 2003. Flex cars allow Brazilian consumers to choose between gasoline and hydrated ethanol and immediately switch to whichever fuel presents the most favourable relative price.
Resumo:
Colletotrichum gossypii var. cephalosporioides, the fungus that causes ramulosis disease of cotton, is widespread in Brazil and can cause severe yield loss. Because weather conditions greatly affect disease development, the objective of this work was to develop weather-based models to assess disease favorability. Latent period, incidence, and severity of ramulosis symptoms were evaluated in controlled environment experiments using factorial combinations of temperature (15, 20, 25, 30, and 35 degrees C) and leaf wetness duration (0, 4, 8, 16, 32, and 64 h after inoculation). Severity was modeled as an exponential function of leaf wetness duration and temperature. At the optimum temperature of disease development, 27 degrees C, average latent period was 10 days. Maximum ramulosis severity occurred from 20 to 30 degrees C, with sharp decreases at lower and higher temperatures. Ramulosis severity increased as wetness periods were increased from 4 to 32 h. In field experiments at Piracicaba, Sao Paulo State, Brazil, cotton plots were inoculated (10(5) conidia ml(-1)) and ramulosis severity was evaluated weekly. The model obtained from the controlled environment study was used to generate a disease favorability index for comparison with disease progress rate in the field. Hourly measurements of solar radiation, temperature, relative humidity, leaf wetness duration, rainfall, and wind speed were also evaluated as possible explanatory variables. Both the disease favorability model and a model based on rainfall explained ramulosis growth rate well, with R(2) of 0.89 and 0.91, respectively. They are proposed as models of ramulosis development rate on cotton in Brazil, and weather-disease relationships revealed by this work can form the basis of a warning system for ramulosis development.
Resumo:
The present study was made to check if the Trad-MCN bioassay, developed with inflorescences of Tradescantia pallida cv. Purpurea, might discriminate genotoxic risks in areas of the city of Santo Andre (SE Brazil) contaminated by different air pollutants, and periods of the year when risks are higher, and to determine if the variations in the frequency of micronuclei (MCN) can be explained by environmental factors that characterize the stressful situation in each site. Potted plants were exposed in sites highly contaminated by ozone (Capuava and School) and in sites reached by high vehicular emissions (downtown and Celso Daniel Park). Pedroso Park, far from the polluted areas, was taken as reference. From September 2003 to September 2004, 20 young inflorescences were collected twice a week from each place and the frequencies of MCN were estimated. The environmental conditions observed in the polluted sites were stressful enough to promote an increase of MCN, mainly in sites reached by high vehicular emissions. But MCN rates in Capuava and at Celso Daniel Park could not be predicted only by pollutants which characterized the air contamination in these sites. More severe weather conditions, mainly low temperature, relative humidity and rainfall, caused an increase of MCN. Improvement of the biomonitoring system is recommended to minimize this negative influence of weather factors. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Weather conditions in critical periods of the vegetative crop development influence crop productivity, thus being a basic parameter for crop forecast. Reliable extended period weather forecasts may contribute to improve the estimation of agricultural productivity. The production of soybean plays an important role in the Brazilian economy, because this country is ranked among the largest producers of soybeans in the world. This culture can be significantly affected by water conditions, depending on the intensity of water deficit. This work explores the role of extended period weather forecasts for estimating soybean productivity in the southern part of Brazil, Passo Fundo, and Londrina (State of Rio Grande do Sul and Parana, respectively) in the 2005/2006 harvest. The goal was to investigate the possible contribution of precipitation forecasts as a substitute for the use of climatological data on crop forecasts. The results suggest that the use of meteorological forecasts generate more reliable productivity estimates during the growth period than those generated only through climatological information.
Resumo:
Sampling owls in a reliable and standardized way is not easy given their nocturnal habits. Playback is a widely employed technique to survey owls. We assessed the influence of wind speed, temperature, air humidity, and moon phase on the response rate of the Tropical Screech Owl Megascops choliba and the Burrowing Owl Athene cunicularia in southeast Brazil. Tropical Screech Owl occurs in scrubland and wooded habitats, whereas the Burrowing Owl inhabits open grasslands to grassland savannah. Sixteen survey points were systematically distributed in four different landscape types, ranging from open grassland to woodland savannah. Field work was conducted in 2004 from June to December, the reproductive season of the two owl species. Our study design consisted of eight field expeditions of five nights each; four expeditions occurred under full moon and four under new moon conditions. At each survey station, we performed a broadcast/listening sequence involving several calls and vocalizations from each species, starting with Tropical Screech Owl (the smaller species). From 112 sample periods for each species within their respective preferred habitats, we obtained 54 responses from Tropical Screech Owl (48% response rate) and 30 responses (27% response rate) from Burrowing Owl. We found that the response rate of Tropical Screech Owl increased under conditions of higher temperature and air humidity, while the response rate of Burrowing Owl was higher during full moon nights.