9 resultados para Wavelet Transforms

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an improved voice activity detection (VAD) algorithm using wavelet and support vector machine (SVM) for European Telecommunication Standards Institution (ETS1) adaptive multi-rate (AMR) narrow-band (NB) and wide-band (WB) speech codecs. First, based on the wavelet transform, the original IIR filter bank and pitch/tone detector are implemented, respectively, via the wavelet filter bank and the wavelet-based pitch/tone detection algorithm. The wavelet filter bank can divide input speech signal into several frequency bands so that the signal power level at each sub-band can be calculated. In addition, the background noise level can be estimated in each sub-band by using the wavelet de-noising method. The wavelet filter bank is also derived to detect correlated complex signals like music. Then the proposed algorithm can apply SVM to train an optimized non-linear VAD decision rule involving the sub-band power, noise level, pitch period, tone flag, and complex signals warning flag of input speech signals. By the use of the trained SVM, the proposed VAD algorithm can produce more accurate detection results. Various experimental results carried out from the Aurora speech database with different noise conditions show that the proposed algorithm gives considerable VAD performances superior to the AMR-NB VAD Options 1 and 2, and AMR-WB VAD. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic Time Warping (DTW), a pattern matching technique traditionally used for restricted vocabulary speech recognition, is based on a temporal alignment of the input signal with the template models. The principal drawback of DTW is its high computational cost as the lengths of the signals increase. This paper shows extended results over our previously published conference paper, which introduces an optimized version of the DTW I hat is based on the Discrete Wavelet Transform (DWT). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a new wavelet-based algorithm for low-cost computation of the cepstrum. It can be used for real time precise pitch determination in automatic speech and speaker recognition systems. Many wavelet families are examined to determine the one that works best. The results confirm the efficacy and accuracy of the proposed technique for pitch extraction. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper generalizes the methodology of Cat and Brown [Cai, T., Brown, L.D., 1998. Wavelet shrinkage for nonequispaced samples. The Annals of Statistics 26, 1783-1799] for wavelet shrinkage for nonequispaced samples, but in the presence of correlated stationary Gaussian errors. If the true function is a member of a piecewise Holder class, it is shown that, even for long memory errors, the rate of convergence of the procedure is almost-minimax relative to the independent and identically distributed errors case. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.