4 resultados para Wave guides.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.
Resumo:
In this paper the large-scale mass transport mechanism is used to microstructure azopolymeric films, aiming at controllable hydrophobic surfaces. Using an Ar(+) laser with intensity of 70 mW/cm(2), we produced egg-crate-like surfaces with periods from 1.0 to 3.5 mu m that present distinct wetting properties. The static contact angle of water was measured on the microstructured surfaces, and the results revealed an increase of approximately 9 degrees for a surface pattern period of 2 mu m. Our results indicate the use of the microstructuring method described here for the fabrication of devices with controllable hydrophobicity.
Resumo:
The synthesis of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using D-sorbitol as complexant agent. The chemical reactions were described. Y(0.)9Er(0.1)Al(3)(BO(3))(4) composition presents good thermal stability with regard to crystallization. The Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystallized phase can be obtained at 1,150 degrees C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to similar to 800 nm) at 740 degrees C during 2 h onto silica substrates by spin coating with a gyrset technology.
Resumo:
In this paper we show the fabrication of hydrophobic polymeric surfaces through laser microstructuring. By using 70-ps pulses from a Q-switched and mode-locked Nd:YAG laser at 532 nm, we were able to produce grooves with different width and separation, resulting in square-shaped pillar patterns. We investigate the dependence of the morphology on the surface static contact angle for water, showing that it is in agreement with the Cassie-Baxter model. We demonstrate the fabrication of a superhydrophobic polymeric surface, presenting a water contact angle of 157 degrees. The surface structuring method presented here seems to be an interesting option to control the wetting properties of polymeric surfaces. (C) 2010 Elsevier B.V. All rights reserved.