2 resultados para Waste disposal
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Geophysics has been shown to be effective in identifying areas contaminated by waste disposal, contributing to the greater efficiency of soundings programs and the installation of monitoring wells. In the study area, four trenches were constructed with a total volume of about 25,000 m(3). They were almost totally filled with re-refined lubricating oil waste for approximately 25 years. No protection liners were used in the bottoms and laterals of the disposal trenches. The purpose of this work is to evaluate the potential of the resistivity and ground penetrating radar (GPR) methods in characterizing the contamination of this lubricant oil waste disposal area in Ribeiro Preto, SP, situated on the geological domain of the basalt spills of the Serra Geral Formation and the sandstones of the Botucatu Formation. Geophysical results were shown in 2D profiles. The geophysical methods used enabled the identification of geophysical anomalies, which characterized the contamination produced by the trenches filled with lubricant oil waste. Conductive anomalies (smaller than 185 Omega m) immediately below the trenches suggest the action of bacteria in the hydrocarbons, as has been observed in several sites contaminated by hydrocarbons in previously reported cases in the literature. It was also possible to define the geometry of the trenches, as evidenced by the GPR method. Direct sampling (chemical analysis of the soil and the water in the monitoring well) confirmed the contamination. In the soil analysis, low concentrations of several polycyclic aromatic hydrocarbons (PAHs) were found, mainly naphthalene and phenanthrene. In the water samples, an analysis verified contamination of the groundwater by lead (Pb). The geophysical methods used in the investigation provided an excellent tool for environmental characterization in this study of a lubricant oil waste disposal area, and could be applied in the study of similar areas.
Resumo:
Diffusion coefficients and retardation factors of two metal cations (Cd2+ and Pb2+) were measured for a compacted Brazilian saprolitic soil derived from gneiss, aiming to assess its geoenvironmental performance as a liner for waste disposal sites. This soil occurs extensively all over the country in very thick layers, but has not been used in liners because of its hydraulic conductivity, higher than 10(-9) m/s when compacted at optimum water content of standard Proctor energy, but which can be reduced by means of appropriate compaction techniques or additives. Batch, column, and diffusion tests were carried out with monospecies synthetic solutions at pH 1, 3, and 5.5. Measured diffusion coefficients varied between 0.5 and 4 X 10(-10) m(2)/s. Retardation factors show that cadmium, a very mobile cation, is not adsorbed at pH I but is significantly retained at pH 3 and pH 5.5, whereas lead is retained at all tested pH values though slightly at pH 1. Estimated retardation factors from batch tests were 1.3-2.3 times those resulting from column tests and at its highest when obtained by diffusion tests; whereas batch tests allow a more complete exposure of the soil grains to the solution, time-dependent nonspecific adsorption may take longer to occur. The importance of contact time was observed and should be considered in further investigations. Its significant retention of metals suggests a promising utilization of this soil as a bottom liner for wastes landfills.