5 resultados para Warm-moist weather

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud streets are common feature in the Amazon Basin. They form from the combination of the vertical trade wind stress and moist convection. Here, satellite imagery, data collected during the COBRA-PARA (Caxiuan Observations in the Biosphere, River and Atmosphere of Para) field campaign, and high resolution modeling are used to understand the streets` formation and behavior. The observations show that the streets have an aspect ratio of about 3.5 and they reach their maximum activity around 15:00 UTC when the wind shear is weaker, and the convective boundary layer reaches its maximum height. The simulations reveal that the cloud streets onset is caused by the local circulations and convection produced at the interfaces between forest and rivers of the Amazon. The satellite data and modeling show that the large rivers anchor the cloud streets producing a quasi-stationary horizontal pattern. The streets are associated with horizontal roll vortices parallel to the mean flow that organizes the turbulence causing advection of latent heat flux towards the upward branches. The streets have multiple warm plumes that promote a connection between the rolls. These spatial patterns allow fundamental insights on the interpretation of the Amazon exchanges between surface and atmosphere with important consequences for the climate change understanding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather conditions in critical periods of the vegetative crop development influence crop productivity, thus being a basic parameter for crop forecast. Reliable extended period weather forecasts may contribute to improve the estimation of agricultural productivity. The production of soybean plays an important role in the Brazilian economy, because this country is ranked among the largest producers of soybeans in the world. This culture can be significantly affected by water conditions, depending on the intensity of water deficit. This work explores the role of extended period weather forecasts for estimating soybean productivity in the southern part of Brazil, Passo Fundo, and Londrina (State of Rio Grande do Sul and Parana, respectively) in the 2005/2006 harvest. The goal was to investigate the possible contribution of precipitation forecasts as a substitute for the use of climatological data on crop forecasts. The results suggest that the use of meteorological forecasts generate more reliable productivity estimates during the growth period than those generated only through climatological information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work explores in detail synoptic and mesoscale features of Hurricane Catarina during its life cycle from a decaying baroclinic wave to a tropical depression that underwent tropical transition (TT) and finally to a Category 2 hurricane at landfall over Santa Catarina State coast, southern Brazil. This unique system caused 11 deaths mostly off the Brazilian coast and an estimated half billion dollars in damage in a matter of a few hours on 28 March 2004. Although the closest meteorological station available was tens of kilometres away from the eye, in situ meteorological measurements provided by a work-team sent to the area where the eye made landfall unequivocally reproduces the tropical signature with category 2 strength, adding to previous analysis where this data was not available. Further analyses are based mostly on remote sensing data available at the time of the event. A classic dipole blocking set synoptic conditions for Hurricane Catarina to develop, dynamically contributing to the low wind shear observed. On the other hand, on its westward transit, large scale subsidence limited its strength and vertical development. Catarina had relatively cool SST conditions, but this was mitigated by favourable air-sea fluxes leading to latent heat release-driven processes during the mature phase. The ocean`s dynamic topography also suggested the presence of nearby warm core rings which may have facilitated the transition and post-transition intensification. Since there were no records of such a system at least in the past 30 years and given that SSTs were generally below 26 degrees C and vertical shear was usually strong, despite all satellite data available, the system was initially classified as an extratropical cyclone. Here we hypothesise that this categorization was based oil inadequate regional scale model outputs which did not account for the importance of the latent heat fluxes over the ocean. Hurricane Catarina represents a dramatic event on weather systems in South America. It has attracted attention worldwide and poses questions as whether or not it is a symptom of global warming. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular hydrogen emission is commonly observed in planetary nebulae. Images taken in infrared H(2) emission lines show that at least part of the molecular emission is produced inside the ionized region. In the best studied case, the Helix nebula, the H(2) emission is produced inside cometary knots (CKs), comet-shaped structures believed to be clumps of dense neutral gas embedded within the ionized gas. Most of the H(2) emission of the CKs seems to be produced in a thin layer between the ionized diffuse gas and the neutral material of the knot, in a mini-photodissociation region (mini-PDR). However, PDR models published so far cannot fully explain all the characteristics of the H(2) emission of the CKs. In this work, we use the photoionization code AANGABA to study the H(2) emission of the CKs, particularly that produced in the interface H(+)/H(0) of the knot, where a significant fraction of the H(2) 1-0 S(1) emission seems to be produced. Our results show that the production of molecular hydrogen in such a region may explain several characteristics of the observed emission, particularly the high excitation temperature of the H(2) infrared lines. We find that the temperature derived from H(2) observations, even of a single knot, will depend very strongly on the observed transitions, with much higher temperatures derived from excited levels. We also proposed that the separation between the H alpha and [N II] peak emission observed in the images of CKs may be an effect of the distance of the knot from the star, since for knots farther from the central star the [N II] line is produced closer to the border of the CK than H alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling owls in a reliable and standardized way is not easy given their nocturnal habits. Playback is a widely employed technique to survey owls. We assessed the influence of wind speed, temperature, air humidity, and moon phase on the response rate of the Tropical Screech Owl Megascops choliba and the Burrowing Owl Athene cunicularia in southeast Brazil. Tropical Screech Owl occurs in scrubland and wooded habitats, whereas the Burrowing Owl inhabits open grasslands to grassland savannah. Sixteen survey points were systematically distributed in four different landscape types, ranging from open grassland to woodland savannah. Field work was conducted in 2004 from June to December, the reproductive season of the two owl species. Our study design consisted of eight field expeditions of five nights each; four expeditions occurred under full moon and four under new moon conditions. At each survey station, we performed a broadcast/listening sequence involving several calls and vocalizations from each species, starting with Tropical Screech Owl (the smaller species). From 112 sample periods for each species within their respective preferred habitats, we obtained 54 responses from Tropical Screech Owl (48% response rate) and 30 responses (27% response rate) from Burrowing Owl. We found that the response rate of Tropical Screech Owl increased under conditions of higher temperature and air humidity, while the response rate of Burrowing Owl was higher during full moon nights.