3 resultados para Wall materials

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to encapsulate a casein hydrolysate by spray drying using maltodextrins (DE 10 and 20) as wall materials and to evaluate the efficiency of the microencapsulation in attenuating the bitter taste of the hydrolysate using protein bars as the model system. Microcapsules were evaluated for morphology (SEM), particle size, hygroscopicity, solubility, thermal behavior (DSC), and bitter taste with a trained sensory panel by a paired comparison test (nonencapsulated samples vs. encapsulated samples). Bars were prepared with the addition of 3% casein hydrolysate at free or both encapsulated forms, and were then evaluated for their moisture, water activity (a(w)) and for their bitter taste by a ranking test. Microcapsules were of the matrix type, having continuous surfaces with no apparent porosity for both coatings. Both encapsulated casein hydrolysates had similar hygroscopicity, and lower values than free encapsulated hydrolysates. The degree of hydrolysis of the maltodextrin influenced only the particle size and T(g). The sensory panel considered the protein bars produced with both encapsulated materials less bitter (p < 0.05) than those produced with the free casein hydrolysates. Microencapsulation by spray drying with maltodextrin DE 10 and 20 was successful to attenuate the bitter taste and the hygroscopicity of casein hydrolysates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper and gold nanowires under tension evolve to form linear atomic chains (LACs), and the study and understanding of this evolution is an important subject for the development of nanocontacts. Here we study the differences and similarities between copper and gold nanowires (NWs) under stress along the [111] crystallographic direction until their rupture using tight-binding molecular dynamics. In both metals, the first significant rearrangement occurs due to one inside atom that goes to the NW` surface. In an attempt to better understand this effect, for both metals we also consider hollow NW`s where the inside atoms were excluded after the initial relaxation to create single-wall NW`s (SWNWs). The dynamical evolution of these SWNWs provides insight on the formation of the constriction that evolves to form LACs. Studying the calculated forces supported by the NW`s we show that SWNWs can sustain larger forces before the first major rearrangement in the copper and gold when compared to the original NW`s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.