10 resultados para Vriesea
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Many different species of Bromeliaceae are endangered and their conservation requires specific knowledge of their growth habits and propagation. In vitro culture of bromeliads is an important method for efficient clonal propagation and ill vitro seed g,germination can be used to maintain genetic variability. The present work aims to evaluate the in vitro growth and nutrient concentration in leaves of the epiphyte bromeliads Vriesea friburguensis Mez, Vriesea hieroglyphica (Carriere) E. Morren, and Vriesea unilateralis Mez, which exhibit slow rates of growth in vivo and in vitro. Initially, we compared the endogenous mineral composition of bromeliad plantlets grown in half-strength Murashige and Skoog (MS) medium and the mineral composition considered adequate in the literature. This approach suggested that calcium (Ca) is a critical nutrient and this was considered for new media formulation. Three new culture media were defined in which the main changes to half-strength MS medium were an increase in Ca, magnesium, sulfur, copper, and chloride and a decrease in iron, maintaining the nitrate: ammonium rate at approximate to 2:1. The main difference among the three new media formulated was Ca concentration, which varied from 1.5 mm in half-strength MS to 3.0, 6.0, and 12 mm in M2, M3, and M4 media, respectively. Consistently, all three species exhibited significantly higher fresh and dry weight on M4, the newly defined medium with the highest level of Ca (12 mm). Leaf nitrogen, potassium, zinc, magnesium and boron concentrations increased as Ca concentration in the medium increased from 1.5 to 12 mm.
Resumo:
A new species of Vriesea Lindl. belonging to section Xiphion (E. Morren) E. Morren ex Mez. - V. sanfranciscana Versieux & Wand.- is described and illustrated. The species is only known to occur in the Serra da Canastra National Park, located in the southwestern Minas Gerais, Brazil, and is morphologically related to V. atropurpurea Silveira from serra do Cipo, Espinhaco range.
Resumo:
The species related to Vriesea paraibica (Bromeliaceae, Tillandsioideae) have controversial taxonomic limits. For several decades, this group has been identified in herbarium collections as V. x morreniana, an artificial hybrid that does not grow in natural habitats. The aim of this study was to assess the morphological variation in the V. paraibica complex through morphometric analyses of natural populations. Two sets of analyses were performed: the first involved six natural populations (G1) and the second was carried out on taxa that emerged from the first analysis, but using material from herbarium collections (G2). Univariate ANOVA was used, as well as discriminant analysis of 16 morphometric variables in G1 and 18 in G2. The results of the analyses of the two groups were similar and led to the selection of diagnostic traits of four species. Lengths of the lower and median floral bracts were significant for the separation of red and yellow floral bracts. Vriesea paraibica and V. interrogatoria have red bracts; these two species are differentiated by the widths of the lower and median portions of the inflorescence and by scape length. These structures are larger in the former and smaller in the latter. Of the species with yellow floral bracts, V. eltoniana is distinguished by longer leaf blades and scapes and V. flava is characterized by its shorter sepal lengths. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159, 163-181.
Resumo:
Epiphytic bromeliads have been used as biomonitors of air pollution since they have specialized structures in leaves for absorbing humidity and nutrients available in the atmosphere. Leaves of five bromeliad species were collected in the conservation unit Parque Estadual Ilha do Cardoso, Sao Paulo State, Brazil, and analyzed by INAA. Vriesea carinata was the species showing most accumulation, with the highest mass fractions of K, Na, Rb and Zn. Similar results were previously found for the same species collected in the dense ombrophilous forest. Chemical composition of bromeliads provided an indication of the atmosphere status in the conservation unit.
Resumo:
Resuspended soil and other airborne particles adhered to the leaf surface affect the chemical composition of the plant. A well-defined cleaning procedure is necessary to avoid this problem, providing a correct assessment of the inherent chemical composition of bromeliads. To evaluate the influence of a washing procedure, INAA was applied for determining chemical elements in the leaves of bromeliads from Vriesea carinata species, both non-washed and washed with Alconox, EDTA and bi-distilled water. Br, Ce, Hg, La, Sc, Se, Sm and Th showed higher mass fractions in non-washed leaves. The washing procedure removed the exogenous material without leaching chemical elements from inside the tissues.
Resumo:
Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic ((15)N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (delta(15)N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (+/- 0.07 SE) and 49.6% (+/- 0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian-bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.
Resumo:
Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneiss-granitic rock outcrops (`inselbergs`). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members. However, some features are notable for their importance for sustaining life on rock outcrops, such as: small epidermal thick-walled cells, uneven sinuous epidermal walls, hypodermis often differentiated into lignified layers with thick-walled cells, aquiferous hypodermis bearing collapsible cells, and the presence of well developed epicuticular stratum. Alcantarea leaves tend to show different shapes in the spongy parenchyma, and have chlorenchymatous palisade parenchyma arranged in more well-defined arches, when compared to Vriesea species from the same habitat.
Resumo:
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO(3)(-)/NH(4)(+) or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary. GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH(4)(+) assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad`s leaves. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.
Resumo:
A checklist of the 14 genera and 34 species of Bromeliaceae from the Parque Estadual do Rio Preto in Sao Goncalo do Rio Preto municipality, Minas Gerais state, southeastern Brazil, is presented. The Tillandsioideae was the most diverse subfamily and was found to be concentrated in rocky field areas. Bromelioideae is also a species rich subfamily, but its taxa have shown a preference to forested areas and savannas at lower altitudes. Pitcairnioideae is highlighted by its level of endemism, but has only four species. Cryptanthus micrus, a new species found in this area is described and illustrated. Our cluster analysis indicated that the Rio Preto State Park has a Bromeliaceae flora more similar to that from Pico do Itambe and Grao Mogol State Parks. Taxa like Dyckia glandulosa, Orthophytum itambense and Vriesea medusa, which were previously considered to be endemic to Pico do Itambe, now have their area of occurrence extended to Rio Preto. These new occurrences highlight the importance to create a corridor joining these neighboring reserves to connect populations of narrowly ranged or rare species. In this work we present pictures of 19 species in their habitats within the park, and we hope that these illustrations will help in the identification and conservation of these taxa.