2 resultados para Voltage references

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to evaluate the classification of arm circumference (AC) in pre-school children by using National Center for Health Statistics (NCHS/CDC-2000) and World Health Organization (WHO-2006) references. We evaluated 205 children: weight, height and AC were assessed and the body mass index (BMI) was calculated. The BMI values were classified into Z-scores by the WHO referential. The AC was classified into Z-cores by two references, comparing the whole-sample value and among groups (tercis) of BMI Z-score. The correlation was also evaluated between differences of AC with BMI Z-score. The WHO referential classified the AC in Z-scores greater than the NCHS/CDC, which is more specific and less sensitive than the NCHS/CDC for lean children and at the same time more sensitive and less specific for children with overweight. In conclusion, a significant difference in the AC classification occurs according to the referential used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-dependent anion channels (VDAC) are pore-forming proteins found in the outer mitochondrial membrane of eukaryotes. VDACs are known to play an essential role in cellular metabolism and in early stages of apoptosis. In mammals, three VDAC isoforms have been identified. A proteomic approach was exploited to study the expression of VDAC isoforms in rat, bovine, and chicken brain mitochondria. Given the importance of mitochondrially bound hexokinase in regulation of aerobic glycolysis in brain, we studied the possibility that differences in the relative expression of VDAC isoforms may be a factor in determining the species-dependent ratio of type A/type B hexokinase binding sites on brain mitochondria. The spots were characterized, and the signal intensities among spots were compared. VDAC1 was the most abundantly expressed of the three isoforms. Moreover the expression of VDAC1 plus VDAC2 was significantly higher in bovine than in rat brain. Chicken brain mitochondria showed the highest VDAC1 expression and the lowest of VDAC2. Bovine brain mitochondria had the highest VDAC2 levels. We concluded that the nature of hexokinase binding site is not determined by the expression of a single VDAC isoform.