65 resultados para Vitamin D binding protein

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clearance of apoptotic cells by phagocytes is a fundamental process during tissue remodeling and resolution of inflammation. In turn, the phagocytosis of apoptotic cells generates signals that suppress pro-inflammatory activation of macrophages. These events occur during the resolution phase of inflammation and therefore the malfunctioning of this process may lead to inflammation-related tissue damage. Here, we demonstrate that the calcium-binding protein S100A9, normally abundant in the cytoplasm of neutrophils and also released by apoptotic neutrophils, is involved in the suppression of macrophages after the uptake of apoptotic neutrophils. Both, spontaneous and induced production of inflammatory species (nitric oxide, hydrogen peroxide and TNF-alpha) as well as the phagocytic activity were inhibited when macrophages were in presence of apoptotic neutrophils, conditioned medium from neutrophil cultures or a peptide corresponding to the C-terminal region of S100A9 protein. On the other hand, macrophages kept in the conditioned medium of neutrophils that was previously depleted of S100A9 were shown to resume the activated status. Finally, we demonstrate that the calcium-binding property of S100A9 might play a role in the suppression process, since the stimulation of intracellular calcium release with ionomycin significantly reversed the effects of the uptake of apoptotic neutrophils in macrophages. In conclusion, we propose that S100A9 is a novel component of the regulatory mechanisms of inflammation, acting side-by-side with other suppressor factors generated upon ingestion of apoptotic cells. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the concentration of vitamins and minerals in meat protein hydrolysates. Calcium, phosphorus and iron were analyzed by inductively coupled-plasma atomic emission spectrophotometry; vitamin C was analyzed by the reduction of cupric ions and vitamins B1 and B2 by fluorescence. Regarding minerals, the beef hydrolysate (BH) had more iron than the turkey hydrolysate (TH) and the chicken hydrolysate (CH); TH had a little more phosphorus. BH had the largest amount of vitamin C, and similar amounts of vitamins B1 and B2. The amount of these nutrients found in the hydrolysates suggests that it is possible to use them to enrich special dietary formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6(1)22, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 angstrom, and contained two molecules in the asymetric unit. It diffracted to 2.24 angstrom resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oligopeptide-binding protein, OppA, binds and ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides expressed by several bacterial species. In the present study, we report the cloning, purification, refolding and conformational analysis of a recombinant OppA protein derived from Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The oppA gene was expressed in Escherichia coli BL21 (DE3) strain under optimized inducing conditions and the recombinant protein remained largely insoluble. Solubilization was achieved following refolding of the denatured protein. Circular dichroism analysis indicated that the recombinant OppA protein preserved conformational features of orthologs expressed by other bacterial species. The refolded recombinant OppA represents a useful tool for structural and functional analyses of the X. citri protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To investigate the effects of a 6-month supplementation with calcium and cholecalciferol on biochemical parameters and muscle strength of institutionalized elderly. Methods: This prospective, double-blind, placebo-controlled, randomized trial included Brazilian institutionalized people 6 60 years of age receiving a 6-month supplementation ( December to May) of daily calcium plus monthly placebo (calcium/placebo group) or daily calcium plus oral cholecalciferol (150,000 IU once a month during the first 2 months, followed by 90,000 IU once a month for the last 4 months; calcium/vitamin D group). Fasting blood samples for 25-(OH) D, PTH and calcium determination were collected (n = 56) and muscle tests were performed ( n = 46) to measure the strength of hip flexors (SHF) and knee extensors (SKE) before ( baseline) and after the 6-month intervention ( 6 months). Results: Due to seasonal variations, serum 25( OH) D significantly enhanced in both groups after treatment, but the calcium/vitamin D group had significantly higher 25-(OH) D levels than the calcium/placebo group (84 vs. 33%, respectively; p < 0.0001). No cases of hypercalcemia were observed. While the calcium/placebo group showed no improvement in SHF and SKE at 6 months (p = 0.93 and p = 0.61, respectively), SHF was increased in the calcium/vitamin D group by 16.4% (p = 0.0001) and SKE by 24.6% (p = 0.0007). Conclusions: The suggested cholecalciferol supplementation was safe and efficient in enhancing 25(OH)D levels and lower limb muscle strength in the elderly, in the absence of any regular physical exercise practice. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) eliminates helix-distorting DNA base lesions. Seven XP-deficient genetic complementation groups (XPA to XPG) have already been identified in mammals, and their corresponding genes have been cloned. Hereditary defects in NER are associated with several diseases, including xeroderma pigmentosum (XP). UV-DDB (XPE) is formed by two associated subunits, DDB1 and DDB2. UV-DDB was identified biochemically as a protein factor that exhibits very strong and specific binding to ultraviolet (UV)-treated DNA. As a preliminary step to characterize the components of the NER in the filamentous fungus Aspergillus nidulans, here we identified a putative DDB1 homologue, DdbA. Deletion and expression analysis indicated that A. nidulans ddbA gene is involved in the DNA damage response, more specifically in the UV light response and 4-nitroquinoline oxide (4-NQO) sensitivity. Furthermore, the Delta ddbA strain cannot self-cross and expression analysis showed that ddbA can be induced by oxidative stress and is developmentally regulated in both asexual and sexual processes. The Delta ddbA mutation can genetically interact with uvsB(ATR), atmA(ATM), nkuA(KU70), H2AX-S129A (a replacement of the conserved serine in the C-terminal of H2AX with alanine), and cshB (a mutation in CSB Cockayne`s syndrome protein involved in the transcription-coupled repair subpathway of NER) mutations. Finally, to determine the DdbA cellular localization, we constructed a GFP:DdbA strain. In the presence and absence of DNA damage, DdbA was mostly detected in the nuclei, indicating that DdbA localizes to nuclei and its cellular localization is not affected by the cellular response to DNA damage induced by 4-NQO and UV light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic factors influence whole blood lead (Pb-B) concentrations in lead exposed subjects. This study aimed at examining the combined effects (haplotype analysis) of three polymorphisms (BsmI, ApaI and FokI) in vitamin D receptor (VDR) gene on Pb-B and on the concentrations of lead in plasma (Pb-P), which is more relevant to lead toxicity, in 150 environmentally exposed subjects. Genotypes were determined by RFLP, and Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. Subjects with the bb (BsmI polymorphism) or ff (FokI polymorphism) genotypes have lower B-Pb than subjects in the other genotype groups. Subjects with the aa (ApaI polymorphism) or ff genotypes have lower P-Pb than subjects in the other genotype groups. Lower Pb-P, Pb-B, and %Pb-P/Pb-B levels were found in subjects with the haplotype combining the a, b, and f alleles for the ApaI, BsmI, and FokI polymorphisms, respectively, compared with the other haplotype groups, thus suggesting that VDR haplotypes modulate the circulating levels of lead in exposed subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyze vitamin D levels and their association with bone mineral density and body composition in primary antiphospholipid syndrome. For this cross-sectional study 23 premenopausal women with primary antiphospholipid syndrome (Sapporo criteria) and 23 age- and race-matched healthy controls were enrolled. Demographic, anthropometric, clinical and laboratorial data were collected using clinical interview and chart review. Serum 25-hydroxyvitamin D levels, parathormone, calcium and 24-hour urinary calcium were evaluated in all subjects. Bone mineral density and body composition were studied by dual X-ray absorptiometry. The mean age of patients and controls was 33 years. Weight (75.61 [20.73] vs. 63.14 [7.34] kg, p=0.009), body mass index (29.57 [7.17] vs. 25.35 [3.37] kg, p=0.014) and caloric ingestion (2493 [1005.6] vs. 1990 [384.1] kcal/day, p=0.03) were higher in PAPS than controls. All PAPS were under oral anticoagulant with INR within therapeutic range. Interestingly, biochemical bone parameters revealed lower levels of 25-hydroxyvitamin D [21.64 (11.26) vs. 28.59 (10.67) mg/dl, p=0.039], serum calcium [9.04 (0.46) vs. 9.3 (0.46) mg/dl, p=0.013] and 24-hour urinary calcium [106.55 (83.71) vs. 172.92 (119.05) mg/d, p=0.027] in patients than in controls. Supporting these findings, parathormone levels were higher in primary antiphospholipid syndrome than in controls [64.82 (37.83) vs. 44.53 (19.62) pg/ml, p=0.028]. The analysis of osteoporosis risk factors revealed that the two groups were comparable (p>0.05). Lumbar spine, femoral neck, total femur and whole body bone mineral density were similar in both groups (p>0.05). Higher fat mass [28.51 (12.93) vs. 20.01 (4.68) kg, p=0.005] and higher percentage of fat [36.08 (7.37) vs. 31.23 (4.64)%, p=0.010] were observed in PAPS in comparison with controls; although no difference was seen regarding lean mass. In summary, low vitamin D in primary antiphospholipid syndrome could be secondary to higher weight and fat mass herein observed most likely due to adipocyte sequestration. This weight gain may also justify the maintenance of bone mineral density even with altered biochemical bone parameters. Lupus (2010) 19, 1302-1306.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:To determine the risk factors for the presence of moderate/severe vertebral fracture, specifically 25-hydroxyvitamin D (25-OHD). Study design: Cross-sectional study conducted for 2 years in the city of Sao Paulo, Brazil including community-dwelling elderly women. Methods: Bone mineral density (BMD), serum 25-OHD, intact parathyroid hormone (iPTH), calcium and estimated glomerular filtration rate (eGFR) were examined in 226 women without vertebral fractures (NO FRACTURE group) and 189 women with at least one moderate/severe vertebral fracture (FRACTURE group). Vertebral fracture assessment (VFA) was evaluated using both the Genant semiquantitative (SQ) approach and morphometry. Results: Patients in the NO FRACTURE group had lower age, increased height, higher calcium intake, and higher BMD compared to those patients in the FRACTURE group (p < 0.05). Of interest, serum levels of 25-OHD in the NO FRACTURE group were higher than those observed in the FRACTURE group (51.73 nmol/L vs. 42.31 nmol/L, p < 0.001). Reinforcing this finding, vitamin D insufficiency (25-OHD < 75 nmol/L) was observed less in the NO FRACTURE group (82.3% vs. 93.65%, p = 0.001). After adjustment for significant variables within the patient population (age, height, race, calcium intake, 25-OHD, eGFR and sites BMD), the logistic-regression analyses revealed that age (OR = 1.09, 95% Cl 1.04-1.14, p < 0.001) femoral neck BMD (OR = 0.7, 95% CI 0.6-0.82, p < 0.001) and 25-OHD <75 nmol/L (OR = 2.38, 95% CI 1.17-4.8, p = 0.016) remains a significant factor for vertebral fracture. Conclusion: Vitamin D insufficiency is a contributing factor for moderate/severe vertebral fractures. This result emphasizes the importance of including this modifiable risk factor in the evaluation of elderly women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.