39 resultados para Vehicle-Actuated Signals.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work presents the analysis of nonlinear aeroelastic time series from wing vibrations due to airflow separation during wind tunnel experiments. Surrogate data method is used to justify the application of nonlinear time series analysis to the aeroelastic system, after rejecting the chance for nonstationarity. The singular value decomposition (SVD) approach is used to reconstruct the state space, reducing noise from the aeroelastic time series. Direct analysis of reconstructed trajectories in the state space and the determination of Poincare sections have been employed to investigate complex dynamics and chaotic patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincare mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents. Copyright (C) 2009 F. D. Marques and R. M. G. Vasconcellos.
Resumo:
Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.
Resumo:
Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.
Resumo:
The mechanism of electroweak symmetry breaking ( EWSB) will be directly scrutinized soon at the CERN Large Hadron Collider. We analyze the LHC potential to look for new vector bosons associated with the EWSB sector, presenting a possible model independent approach to search for these new spin-1 resonances. We show that the analyses of the processes pp -> l(+)l(1-)E(T), l +/- jjE(T), l(1 +/-)l(+)l(-)E(T), l(+/-)jjE(T), and l(+)l(-) jj (with l, l' = e or mu and j = jet) have a large reach at the LHC and can lead to the discovery or exclusion of many EWSB scenarios such as Higgsless models.
Resumo:
We investigate the collider signals associated with scalar quirks (squirks) in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Because of the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited squirkonium loses energy to radiation before annihilating back into standard model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time scales. The most promising annihilation channel for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.
Resumo:
We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb(-1). We also compare the displaced vertex reaches of the LHC and Tevatron.
Resumo:
This study determined which peripheral variables would better predict the rating of perceived exertion (RPE) and time to exhaustion (TE) during exercise at different intensities. Ten men performed exercises at first lactate threshold (LT1), second lactate threshold (LT2), 50% of the distance from LT1 to LT2 (TT(50%)), and 25% of the distance from LT2 to maximal power output (TW(25%)). Lactate, catecholamines, potassium, pH, glucose, (V) over dotO(2), VE, HR, respiratory rate (RR) and RPE were measured and plotted against the exercise duration for the slope calculation. Glucose, dopamine, and noradrenaline predicted RPE in TT(50%) (88%), LT2 (64%), and TW(25%) (77%), but no variable predicted RPE in LT1. RPE (55%), RPE+HR (86%), and RPE+RR (92% and 55%) predicted TE in LT1, TT(50%), LT2, and TW(25%), respectively. At intensities from TT(50%) to TW(25%), variables associated with brain activity seem to explain most of the RPE slope, and RPE (+HR and+RR) seems to predict the TE.
Resumo:
Research Foundation of the State of Sao Paulo (FAPESP)
Resumo:
State of Sao Paulo Research Foundation (FAPESP)
Resumo:
The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]
Resumo:
This paper develops H(infinity) control designs based on neural networks for fully actuated and underactuated cooperative manipulators. The neural networks proposed in this paper only adapt the uncertain dynamics of the robot manipulators. They work as a complement of the nominal model. The H(infinity) performance index includes the position errors as well the squeeze force errors between the manipulator end-effectors and the object, which represents a complete disturbance rejection scenario. For the underactuated case, the squeeze force control problem is more difficult to solve due to the loss of some degrees of manipulator actuation. Results obtained from an actual cooperative manipulator, which is able to work as a fully actuated and an underactuated manipulator, are presented. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, an algorithm to compute the envelope of non-destructive testing (NDT) signals is proposed. This method allows increasing the speed and reducing the memory in extensive data processing. Also, this procedure presents advantage of preserving the data information for physical modeling applications of time-dependent measurements. The algorithm is conceived to be applied for analyze data from non-destructive testing. The comparison between different envelope methods and the proposed method, applied to Magnetic Bark Signal (MBN), is studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Track critical locations with respect to the railway vehicle safety are the passages through the turnouts. The purpose of this investigation is to evaluate the safety of a railway vehicle crossing a turnout. In this study, the topography of a track turnout lay-out has been experimentally measured, and its geometric properties were synthesised. Results show that a constant wavelength vehicle oscillation occurs on the switches in the turnout and that the maximum lateral force at 65 km/h is almost 65% greater than those at low speeds (under 30 km/h).
Resumo:
Dynamic vehicle behavior is used to identify safe traffic speed limits. The proposed methodology is based on the vehicle vertical wheel contact force response excited by measured pavement irregularities on the frequency domain. A quarter-car model is used to identify vehicle dynamic behavior. The vertical elevation of an unpaved road surface has been measured. The roughness spectral density is quantified as ISO Level C. Calculations for the vehicle inertance function were derived by using the vertical contact force transfer function weighed by the pavement spectral density roughness function in the frequency domain. The statistical contact load variation is obtained from the vehicle inertance density function integration. The vehicle safety behavior concept is based on its handling ability properties. The ability to generate tangential forces on the wheel/road contact interface is the key to vehicle handling. This ability is related to tire/pavement contact forces. A contribution to establish a traffic safety speed limit is obtained from the likelihood of the loss of driveability. The results show that at speeds faster than 25 km/h the likelihood of tire contact loss is possible when traveling on the measured road type. DOI: 10.1061/(ASCE)TE.19435436.0000216. (C) 2011 American Society of Civil Engineers.
Resumo:
A computational method based on the impulse response and on the discrete representation computational concept is proposed for the determination of the echo responses from arbitrary-geometry targets. It is supposed that each point of the transducer aperture can be considered as a source radiating hemispherical waves to the reflector. The local interaction with each of the hemispherical waves at the reflector surface can be modeled as a plane wave impinging on a planar surface, using the respective reflection coefficient. The method is valid for all field regions and can be performed for any excitation waveform radiated from an arbitrary acoustic aperture. The effects of target geometry, position, and material on both the amplitude and the shape of the echo response are studied. The model is compared with experimental results obtained using broadband transducers together with plane and cylindrical concave rectangular reflectors (aluminum, brass, and acrylic), as well as a circular cavity placed on a plane surface, in a water medium. The method can predict the measured echoes accurately. This paper shows an improved approach of the method, considering the reflection coefficient for all incident hemispherical waves arriving at each point of the target surface.