12 resultados para Vasopressin antagonist receptor

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pilocarpine (cholinergic muscarinic agonist) injected peripherally may act centrally to produce pressor responses; in the present study, using c-fos immunoreactive expression, we investigated the forebrain and brainstem areas activated by pressor doses of intravenous (i.v.) pilocarpine. In addition, the importance of vasopressin secretion and/or sympathetic activation and the effects of lesions in the anteroventral third ventricle (AV3V) region in awake rats were also investigated. In male Holtzman rats, pilocarpine (0.04 to 4 mu mol/kg b.w.) i.v. induced transitory hypotension followed by long lasting hypertension. Sympathetic blockade with prazosin (1 mg/kg b.w.) i.v. or AV3V lesions (1 day) almost abolished the pressor response to i. v. pilocarpine (2 mu mol/kg b.w.), whereas the vasopressin antagonist (10 mu g/kg b.w.) i.v. reduced the response to pilocarpine. Pilocarpine (2 and 4 mu mol/kg b.w.) i.v. increased the number of c-fos immunoreactive cells in the subfornical organ, paraventricular and supraoptic nuclei of the hypothalamus, organ vasculosum of the lamina terminalis, median preoptic nucleus, nucleus of the solitary tract and caudal and rostral ventrolateral medulla. These data suggest that i.v. pilocarpine activates specific forebrain and brainstem mechanisms increasing sympathetic activity and vasopressin secretion to induce pressor response. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study the effects of bradykinin receptor antagonists were investigated in a murine model of asthma using BALB/c mice immunized with ovalbumin/alum and challenged twice with aerosolized ovalbumin. Twenty four hours later eosinophil proliferation in the bone marrow, activation (lipid bodies formation), migration to lung parenchyma and airways and the contents of the pro-angiogenic and pro-fibrotic cytokines TGF-beta and VEGF were determined. The antagonists of the constitutive B(2) (HOE 140) and inducible B(1) (R954) receptors were administered intraperitoneally 30 min before each challenge. In sensitized mice, the antigen challenge induced eosinophil proliferation in the bone marrow, their migration into the lungs and increased the number of lipid bodies in these cells. These events were reduced by treatment of the mice with the B(1) receptor antagonist. The B(2) antagonist increased the number of eosinophils and lipid bodies in the airways without affecting eosinophil counts in the other compartments. After challenge the airway levels of VEGF and TGF-beta significantly increased and the B(1) receptor antagonist caused a further increase. By immunohistochemistry techniques TGF-beta was found to be expressed in the muscular layer of small blood vessels and VEGF in bronchial epithelial cells. The B(1) receptors were expressed in the endothelial cells. These results showed that in a murine model of asthma the B(1) receptor antagonist has an inhibitory effect on eosinophils in selected compartments and increases the production of cytokines involved in tissue repair. It remains to be determined whether this effects of the B(1) antagonist would modify the progression of the allergic inflammation towards resolution or rather towards fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Levels of endothelins are particularly high in the lung, and there is evidence that these peptides are involved in asthma. Asthma is a chronic inflammatory disease associated with lymphocyte infiltration. In the present study, we used a murine model of asthma to investigate the role of endothelins in lymphocyte and eosinophil infiltration into the airway hyperreactivity and mucus secretion. Sensitized C57B1/6 mice were treated with endothelin ET(A) receptor antagonist (BQ123) or endothelin ET(B) receptor antagonist (BQ788) 30 min before an antigen aerosol challenge. After 24 h, dose response curves to methacholine were performed in isolated lungs, FACS analysis of lymphocytes and eosinophil counts were performed in bronchoalveolar lavage fluid and mucus index was determined by histopathology. In sensitized and antigen-challenged mice there is a marked increase in the T CD(4)(+), T CD(8)(+), B220(+), T gamma delta(+) and NK1.1(+) lymphocyte subsets. Treatment with BQ123 further increased these cell populations. The number of eosinophils, airway hyperreactivity and mucus were all reduced by BQ123 treatment. The BQ788 had no significant effect on the parameters analyzed. Treatment with BQ123 reduced the endothelin concentration in lung homogenates, suggesting that endothelins exert a positive feedback on their synthesis. We show here that in murine asthma the ET(A) receptor antagonist up-regulates lymphocyte infiltration and reduces eosinophils, hyperreactivity and mucus. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH(3)). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH(3), increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH(3.) We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-known that glucagon increases fractional excretion of urea in rats after a protein intravenous infusion. This effect was investigated by using: (a) in vitro microperfusion technique to measure [(14)C]-urea permeability (Pu x 10(-5) cm/s) in inner medullary collecting ducts (IMCD) from normal rats in the presence of 10(-7) M of glucagon and in the absence of vasopressin and (b) immunoblot techniques to determine urea transporter expression in tubule suspension incubated with the same glucagon concentration. Seven groups of IMCDs (n = 47) were studied. Our results revealed that: (a) glucagon decreased urea reabsorption dose-dependently; (b) the glucagon antagonist des-His(1)-[Glu(9)], blocked the glucagon action but not vasopressin action; (c) the phorbol myristate acetate, decreased urea reabsorption but (d) staurosporin, restored its effect; e) staurosporin decreased glucagon action, and finally, (f) glucagon decreased UT-A1 expression. We can conclude that glucagon reduces UT-A1 expression via a glucagon receptor by stimulating PKC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yano Y, Cesar KR, Araujo M, Rodrigues Jr. AC, Andrade LC, Magaldi AJ. Aquaporin 2 expression increased by glucagon in normal rat inner medullary collecting ducts. Am J Physiol Renal Physiol 296: F54-F59, 2009. First published October 1, 2008; doi: 10.1152/ajprenal.90367.2008.-It is well known that Glucagon (Gl) is released after a high protein diet and participates in water excretion by the kidney, principally after a protein meal. To study this effect in in vitro perfused inner medullary collecting ducts (IMCD), the osmotic water permeability (Pf; mu m/s) at 37 degrees C and pH 7.4 in normal rat IMCDs (n = 36) perfused with Ringer/HCO(3) was determined. Gl (10(-7) M) in absence of Vasopressin (AVP) enhanced the Pf from 4.38 +/- 1.40 to 11.16 +/- 1.44 mu m/s (P < 0.01). Adding 10(-8), 10(-7), and 10(-6) M Gl, the Pf responded in a dose-dependent manner. The protein kinase A inhibitor H8 blocked the Gl effect. The specific Gl inhibitor, des-His(1)-[Glu(9)] glucagon (10(-7) M), blocked the Gl-stimulated Pf but not the AVP-stimulated Pf. There occurred a partial additional effect between Gl and AVP. The cAMP level was enhanced from the control 1.24 +/- 0.39 to 59.70 +/- 15.18 fm/mg prot after Gl 10(-7) M in an IMCD cell suspension. The immunoblotting studies indicated an increase in AQP2 protein abundance of 27% (cont 100.0 +/- 3.9 vs. Gl 127.53; P = 0.0035) in membrane fractions extracted from IMCD tubule suspension, incubated with 10(-6) M Gl. Our data showed that 1) Gl increased water absorption in a dose-dependent manner; 2) the anti-Gl blocked the action of Gl but not the action of AVP; 3) Gl stimulated the cAMP generation; 4) Gl increased the AQP2 water channel protein expression, leading us to conclude that Gl controls water absorption by utilizing a Gl receptor, rather than a AVP receptor, increasing the AQP2 protein expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proline-rich peptides from Bothrops jararaca venom (Bj-PRO) were characterized based on the capability to inhibit the somatic angiotensin-converting enzyme. The pharmacological action of these peptides resulted in the development of Captopril, one of the best examples of a target-driven drug discovery for treatment of hypertension. However, biochemical and biological properties of Bj-PROs were not completely elucidated yet, and many recent studies have suggested that their activity relies on angiotensin-converting enzyme-independent mechanisms. Here, we show that Bj-PRO-7a (antagonist. Neural-differentiated P19 cells expressing endogenous M1 receptors were also responsive to Bj-PRO-7a application, whereas no such response was observed in undifferentiated P19 cells not expressing muscarinic receptors. As further support for its specific action on M1 receptors, the peptide did not activate M3 subtypes in transfected CHO cells. Our findings provide a novel M1 muscarinic receptor agonist that could be used for basic research and even for pharmacological applications. (C) 2010 International Society for Advancement of Cytometry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focal and segmental glomerulosclerosis (FSGS) is one of the most important causes of end-stage renal failure. The bradykinin B1 receptor has been associated with tissue inflammation and renal fibrosis. To test for a role of the bradykinin B1 receptor in podocyte injury, we pharmacologically modulated its activity at different time points in an adriamycin-induced mouse model of FSGS. Estimated albuminuria and urinary protein to creatinine ratios correlated with podocytopathy. Adriamycin injection led to loss of body weight, proteinuria, and upregulation of B1 receptor mRNA. Early treatment with a B1 antagonist reduced albuminuria and glomerulosclerosis, and inhibited the adriamycin-induced downregulation of podocin, nephrin, and alpha-actinin-4 expression. Moreover, delayed treatment with antagonist also induced podocyte protection. Conversely, a B1 agonist aggravated renal dysfunction and even further suppressed the levels of podocyte-related molecules. Thus, we propose that kinin has a crucial role in the pathogenesis of FSGS operating through bradykinin B1 receptor signaling. Kidney International (2011) 79, 1217-1227; doi:10.1038/ki.2011.14; published online 16 March 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na(+)/H(+) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647-F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009.-The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased similar to 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TR alpha and TR beta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TR beta ligands has been stimulated by the finding that several pharmacological actions mediated by TR beta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TR beta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1. The effect of several TR beta ligands, including the TR beta selective agonist GC-I and the TR beta selective antagonist NH-3, were investigated. We also determined the kinetic rate constants for the interaction of TR beta-T3 with both coregulators, and accessed the thermodynamic parameters for the interaction with DAX1. Our findings Suggest that flexibility plays an important role in the interaction between the receptor and its coregulators. and point out important aspects of experimental design that should be addressed when using TR beta LBD and its agonists. Furthermore, the methodology described here may be useful for the identification of new TR beta ligands. (C) 2008 Elsevier Ltd. All rights reserved.