3 resultados para Van Der Pol Equation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Purpose: Interferon regulatory factor 6 encodes a member of the IRF family of transcription factors. Mutations in interferon regulatory factor 6 cause Van der Woude and popliteal pterygium syndrome, two related orofacial clefting disorders. Here, we compared and contrasted the frequency and distribution of exonic Mutations in interferon regulatory factor 6 between two large geographically distinct collections of families with Van der Woude and between one collection of families with popliteal pterygium syndrome. Methods: We performed direct sequence analysis of interferon regulatory factor 6 exons oil samples from three collections, two with Van der Woude and one with popliteal pterygium syndrome. Results: We identified mutations in interferon regulatory factor 6 exons in 68% of families in both Van der Woude collections and in 97% of families with popliteal pterygium syndrome. In sum, 106 novel disease-causing variants were found. The distribution of mutations in the interferon regulatory factor 6 exons in each collection was not random; exons 3, 4, 7, and 9 accounted for 80%. In the Van der Woude collections, the mutations were evenly divided between protein truncation and missense, whereas most mutations identified in the popliteal pterygium syndrome collection were missense. Further, the missense mutations associated with popliteal pterygium syndrome were localized significantly to exon 4, at residues that are predicted to bind directly to DNA. Conclusion: The nonrandom distribution of mutations in the interferon regulatory factor 6 exons suggests a two-tier approach for efficient mutation screens for interferon regulatory factor 6. The type and distribution of mutations are consistent with the hypothesis that Van der Woude is caused by haploinsufficiency of interferon regulatory factor 6. Oil the other hand, the distribution of popliteal pterygium syndrome-associated mutations suggests a different, though not mutually exclusive, effect oil interferon regulatory factor 6 function. Genet Med 2009:11(4):241-247.
Resumo:
In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.
Resumo:
A previously proposed model describing the trapping site of the interstitial atomic hydrogen in borate glasses is analyzed. In this model the atomic hydrogen is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported atomic hydrogen isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system of the observed decay kinetics was solved numerically using the Runge Kutta method. The experimental untrapping activation energy of 0.7 x 10(-19) J is in good agreement with the calculated results of dispersion interaction between the stabilized atomic hydrogen and the neighboring oxygen atoms at the vertices of hexagonal ring structures. (C) 2009 Elsevier B.V. All rights reserved.