1 resultado para Valle de Huentota (Mendoza, Argentina)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.