57 resultados para VINYL HALIDES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
(1Z,3Z)-Butyltelluro-o-4-methoxy-1,3-butadiene 2 was obtained by the hydrotelluration of(Z)-1-methoxy-but-1-en-3-ynes 1. The butadienyllithium 3 obtained by the Te/Li exchange reaction in the (1Z,3Z)-1-butyltelluro-4-methoxy-1.3-butadiene 2 reacted with aldehydes to form the corresponding alcohols 4a-d with total retention of configuration. The alcohols formed undergo hydrolysis, resulting in the alpha,beta,gamma,delta-unsaturated aldehydes of (E,E) configuration, which are precursors of trienes obtained from natural sources. The products of this reaction were employed in the synthesis of methyl-(2E,4E)-decadienoate 7, which is a component of the flavor principles of ripe Bartlett pears. Performing the Wittig reaction of the methyl triphenylphosphorane with the deca-(2E,4E)-dienal 5a, we were able to synthesize the undeca-(1,3E,5E)-triene 6a. This compound is a sex-pheromone component of the marine brown algae Fucus serratus, Dictyopteris plagiograma, and Dictyopteris australis. Performing the Wittig reaction of methyl triphenylphosphorane with the octa-(2E,4E)-dienal 5c, the nona-(1,3E,5E)-triene 6b was synthesized. The compound obtained is a sex-pheromone component of the marine brown alga Sargassum horneri. The octa-( 1,3E,5E)-triene 6c was easily obtained from hepta-(2E,4E)-dienal 5d by the Wittig reaction with methyl triphenylphophorane. This compound is a sex-pheromone component of the marine brown alga Fucus serratus. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.
Resumo:
We described herein the use of imidazolium ionic liquids [bmim]PF(6) and [bmim]BF(4) in the selective, metal and catalyst-free synthesis of unsymmetrical diaryl selenides by electrophilic substitution in arylboron reagents with arylselenium halides (Cl and Br) at room temperature. This is a general substitution reaction and it was performed with arylboronic acids or potassium aryltrifluoroborates bearing electron-withdrawing or electron-donating groups, affording the corresponding diaryl selenides in good to excellent yields. The ionic liquid [bmim][PF(6)] was easily recovered and utilized for further substitution reactions.
Resumo:
In the present work we investigated the electrochemical behavior of PVA on polycrystalline Pt and single-crystal Pt electrodes. PVA hampered the characteristic hydrogen UPD and anion adsorption on all investigated surfaces, with the processes on Pt(110) being the most affected by the PVA presence. Several oxidation waves appeared as the potential was swept in the positive direction and the Pt(111) was found to be the most active for the oxidation processes. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3615965] All rights reserved.
Resumo:
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends-produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained When PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible; The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.
Resumo:
This work presents a mathematical model for the vinyl acetate and n-butyl acrylate emulsion copolymerization process in batch reactors. The model is able to explain the effects of simultaneous changes in emulsifier concentration, initiator concentration, monomer-to-water ratio, and monomer feed composition on monomer conversion, copolymer composition and, to lesser extent, average particle size evolution histories. The main features of the system, such as the increase in the rate of polymerization as temperature, emulsifier, and initiator concentrations increase are correctly represented by the model. The model accounts for the basic features of the process and may be useful for practical applications, despite its simplicity and a reduced number of adjustable parameters.
Resumo:
Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly (vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (-OH) and hydrophobic (Si-(CH(3))(2)) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of similar to 14 wt % without a loss in the ability to swell less polar solvents. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 158-166, 2010
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Both gelatin and poly(vinyl alcohol) (PVA) can be cross linked with glutaraldehyde (GLU). In the case of gelatin, the GLU reacts with each e-NH2 functional group of adjacent lysine residues, while for PVA, the GLU reacts with two adjacent hydroxyl groups, forming acetal bridges. Thus it can be considered possible to cross link adjacent macromolecules of gelatin and PVA using GLU. In this context, the aims of this work were the development of biodegradable films based on blends of gelatin and poly(vinyl alcohol) cross linked with GLU, and the characterization of some of their main physical and functional properties. All the films were produced from film-forming solutions (FFS) containing 2 g macromolecules (PVA + gelatin)/100 g FFS, 25 g glycerol/100 g macromolecules, and 4 g GLU (25% solution)/100 g FFS. The FFS were prepared with two concentrations of PVA (20 or 50 g PVA/100 g macromolecules) and two reaction temperatures: 90 or 55 degrees C, applied for 30 min. The films were obtained after drying (30 degrees C/24 h) and conditioning at 25 degrees C and 58% of relative humidity for 7 days, and were then characterized. The results for the color parameters, mechanical properties, phase transitions and infrared spectra showed that some chemical modifications occurred, principally for the gelatin. However, in general, all the characteristics of the films were either typical of films based on blends of these macromolecules without cross linking, or slightly higher. A greater improvement in the properties of this material was probably not observed due to the crystallinity of the PVA, which has a melting point above 90 degrees C. The presence of microcrystals in the polymer chain probably reduced macromolecular mobility, hindering the reaction. Thus more research is necessary to produce biodegradable films with improved properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C(PVA)) Of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (C(P)) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA Using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture Content. the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation. elongation at break, solubility in water, Moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the C(P) affected this property. Moreover. the puncture force was affected slightly by the C(PVA). Concerning the Solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA Values. In general. the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to study the effect of the poly(vinyl alcohol) (PVA) concentration on the thermal and viscoelastic properties of films based on blends of gelatin and PVA using differential scanning calorimetry (DSC) and dynamic-mechanical analysis (DMA). One glass transition was observed between 43 and 49 degrees C on the DSC curves obtained in the first scanning of the blended films, followed by fusion of the crystalline portion between 116 and 134 degrees C. However, the DMA results showed that only the films with 10% PVA had a single peak in the tan 5 spectrum. However, when the PVA concentration was increased the dynamic mechanical spectra showed two peaks on the tan 6 curves, indicating two T(g)s. Despite this phase separation behavior the Gordon and Taylor model was successfully applied to correlate T, as a function of film composition, thus determining k = 7.47. In the DMA frequency tests, the DMA spectra showed that the storage modulus values decreased with increasing temperature. The master curves for the PVA-gelatin films were obtained applying the TTS principle (T(r) = 100 degrees C). The WLF model was thus applied allowing for the determination of the constants C(1) and C(2). The values of these constants increased with increasing PVA concentrations in the blend: C(1) = 49-66 and C(2) = 463-480. These values were used to calculate the fractional free volume of the films at the T(g) and the thermal expansion coefficient of the films above the T(g). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol (R) 418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.
Resumo:
In the last ten to fifteen years, there has been a predominant belief that the linear-supralinear-sublinear behaviour of the TL response of alkali halides to the radiation dose necessarily occurs in the heating stage for TL reading. It is based on the assumption that coloration in these crystals grows linear-sublinearly with the dose during irradiation. Since both colour centre and TL centre are based on the same point defects the TL response should also grow linear-sublinearly with dose. In 1950, half a dozen authors showed that the coloration of F-centres in KCl takes place in two stages, the second one being responsible for non-linear behaviour. In this paper, we show that indeed in NaCl both F-centre and TL grow linear-supralinear-sublinearly with the dose during irradiation.
Resumo:
The adsorption behavior of polycations at ionic strengths (1) ranging from 0.001 to 0.1 onto silicon wafers was studied by means of ellipsometry, contact angle measurements and atomic force microscopy (AFM). Polycations chosen were bromide salts of poly(4-vinylpyridine) N-alkyl quaternized with linear aliphatic chains of 2 and 5 carbon atoms, QPVP-C2 and QPVP-C5, respectively. Under 1 0.001 the reduction of screening effects led to low adsorbed amounts of QPVP-C2 or QPVP-C5 (1.0 +/- 0.1 mg/m(2)), arising from the adsorption of extended chains. Upon increasing l to 0.1, screening effects led to conformational changes of polyelectrolyte chains ill Solution and to higher adsorbed amount values (1.9 +/- 0.2 mg/m(2)). Advancing contact angle theta(a) measurements performed with water drops onto QPVP-C2 and QPVP-C5 adsorbed layers varied from (45 +/- 2)degrees to (50 +/- 5)degrees, evidencing the exposure of both hydrophobic alkyl groups and charged moieties. The adsorption of lysozyme (LYZ) molecules to QPVP-C5 layers was more pronounced than to QPVP-C2 films. Antimicrobial effect of LYZ bound to QPVP-C2 or QPVP-C5 layers or to Si wafers was evaluated with enzymatic assays using Micrococcus luteus as Substrates. The adsorption behavior of QPVP-C2 and QPVP-C5 at the water-air interface was studied by means Of surface tension measurements. Only QPVP-C5 was able to reduce water Surface tension. Mixtures of LYZ and QPVP-C5 were more efficient in reducing Surface tension than pure LYZ solution, evidencing co-adsorption at liquid-air interface. Moreover, antimicrobial action observed for mixtures of LYZ and QPVP-C5 was more pronounced than that measured for pure LYZ. Hydrophobic interaction between LYZ and QPVP-C5 ill Solution seems to drive the binding and to preserve LYZ secondary structure. (c) 2008 Elsevier Inc. All rights reserved.