137 resultados para VENTILATION: mechanically controlled

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI). Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V (T)) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P (insp) = 10 cmH(2)O and PEEP = 5 cmH(2)O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P (High) = 10 cmH(2)O) and positive end-expiratory pressure (P (Low) = 5 cmH(2)O)] and inspiratory/expiratory times: T (High) = 0.3 s and T (Low) = 0.3 s. PSV was set as follows: 2 cmH(2)O above P (High) and 7 cmH(2)O above P (Low). All rats were mechanically ventilated in air and PEEP = 5 cmH(2)O for 1 h. Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-alpha, interleukin-6, and type III procollagen. In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and objective: Dynamic indices represented by systolic pressure variation and pulse pressure variation have been demonstrated to be more accurate than filling pressures in predicting fluid responsiveness. However, the literature is scarce concerning the impact of different ventilatory modes on these indices. We hypothesized that systolic pressure variation or pulse pressure variation could be affected differently by volume-controlled ventilation and pressure-controlled ventilation in an experimental model, during normovolaemia and hypovolaemia. Method: Thirty-two anaesthetized rabbits were randomly allocated into four groups according to ventilatory modality and volaemic status where G1-ConPCV was the pressure-controlled ventilation control group, G2-HemPCV was associated with haemorrhage, G3-ConVCV was the volume-controlled ventilation control group and G4-HemVCV was associated with haemorrhage. In the haemorrhage groups, blood was removed in two stages: 15% of the estimated blood volume withdrawal at M1, and, 30 min later, an additional 15% at M2. Data were submitted to analysis of variance for repeated measures; a value of P < 0.05 was considered to be statistically significant. Results: At MO (baseline), no significant differences were observed among groups. At M1, dynamic parameters differed significantly among the control and hypovolaemic groups (P < 0.05) but not between ventilation modes. However, when 30% of the estimated blood volume was removed (M2), dynamic parameters became significantly higher in animals under volume-controlled ventilation when compared with those under pressure-controlled ventilation. Conclusions: Under normovolaemia and moderate haemorrhage, dynamic parameters were not influenced by either ventilatory modalities. However, in the second stage of haemorrhage (30%), animals in volume-controlled ventilation presented higher values of systolic pressure variation and pulse pressure variation when compared with those submitted to pressure-controlled ventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. Design: Prospective controlled laboratory animal investigation. Setting: Experimental Pulmonology Laboratory of the University of Sao Paulo. Subjects: Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 +/- 3.2 kg, mean +/- SD). Interventions. In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. Measurements and Main Results: Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers, Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. Conclusions. We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The objective of this study is to evaluate blood glucose (BG) control efficacy and safety of 3 insulin protocols in medical intensive care unit (MICU) patients. Methods: This was a multicenter randomized controlled trial involving 167 MICU patients with at least one BG measurement +/- 150 mg/dL and one or more of the following: mechanical ventilation, systemic inflammatory response syndrome, trauma, or burns. The interventions were computer-assisted insulin protocol (CAIP), with insulin infusion maintaining BG between 100 and 130 mg/dL; Leuven protocol, with insulin maintaining BG between 80 and 110 mg/dL; or conventional treatment-subcutaneous insulin if glucose > 150 mg/dL. The main efficacy outcome was the mean of patients` median BG, and the safety outcome was the incidence of hypoglycemia (<= 40 mg/dL). Results: The mean of patients` median BG was 125.0, 127.1, and 158.5 mg/dL for CAIP, Leuven, and conventional treatment, respectively (P = .34, CAIP vs Leuven; P < .001, CAIP vs conventional). In CAIP, 12 patients (21.4%) had at least one episode of hypoglycemia vs 24 (41.4%) in Leuven and 2 (3.8%) in conventional treatment (P = .02, CAIP vs Leuven; P = .006, CAIP vs conventional). Conclusions: The CAIP is safer than and as effective as the standard strict protocol for controlling glucose in MICU patients. Hypoglycemia was rare under conventional treatment. However, BG levels were higher than with IV insulin protocols. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals. Design. Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects. Thirty normal male Wistar rats (180-230 g). Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V`) of 10 mL/s (F10) or high V` of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V` = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V` 10 mL/sec. Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered. Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Noninvasive positive-pressure ventilation (NPPV) modes are currently available on bilevel and ICU ventilators. However, little data comparing the performance of the NPPV modes on these ventilators are available. Methods: In an experimental bench study, the ability of nine ICU ventilators to function in the presence of leaks was compared with a bilevel ventilator using the IngMar ASL5000 lung simulator (IngMar Medical; Pittsburgh, PA) set at a compliance of 60 mL/cm H(2)O, an inspiratory resistance of 10 cm H(2)O/L/s, an expiratory resistance of 20 cm H(2)O/L/s, and a respiratory rate of 15 breaths/min. All of the ventilators were set at 12 cm H(2)O pressure support and 5 cm H(2)O positive end-expiratory pressure. The data were collected at baseline and at three customized leaks. Main results: At baseline, all of the ventilators were able to deliver adequate tidal volumes, to maintain airway pressure, and to synchronize with the simulator, without missed efforts or auto-triggering. As the leak was increased, all of the ventilators (except the Vision [Respironics; Murrysville, PA] and Servo I [Maquet; Solna, Sweden]) needed adjustment of sensitivity or cycling criteria to maintain adequate ventilation, and some transitioned to backup ventilation. Significant differences in triggering and cycling were observed between the Servo I and the Vision ventilators. Conclusions: The Vision and Servo I were the only ventilators that required no adjustments as they adapted to increasing leaks. There were differences in performance between these two ventilators, although the clinical significance of these differences is unclear. Clinicians should be aware that in the presence of leaks, most ICU ventilators require adjustments to maintain an adequate tidal volume. (CHEST 2009; 136:448-456)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Reduction of automatic pressure support based on a target respiratory frequency or mandatory rate ventilation (MRV) is available in the Taema-Horus ventilator for the weaning process in the intensive care unit (ICU) setting. We hypothesised that MRV is as effective as manual weaning in post-operative ICU patients. Methods There were 106 patients selected in the postoperative period in a prospective, randomised, controlled protocol. When the patients arrived at the ICU after surgery, they were randomly assigned to either: traditional weaning, consisting of the manual reduction of pressure support every 30 minutes, keeping the respiratory rate/tidal volume (RR/TV) below 80 L until 5 to 7 cmH(2)O of pressure support ventilation (PSV); or automatic weaning, referring to MRV set with a respiratory frequency target of 15 breaths per minute (the ventilator automatically decreased the PSV level by 1 cmH(2)O every four respiratory cycles, if the patient`s RR was less than 15 per minute). The primary endpoint of the study was the duration of the weaning process. Secondary endpoints were levels of pressure support, RR, TV (mL), RR/TV, positive end expiratory pressure levels, FiO(2) and SpO(2) required during the weaning process, the need for reintubation and the need for non-invasive ventilation in the 48 hours after extubation. Results In the intention to treat analysis there were no statistically significant differences between the 53 patients selected for each group regarding gender (p = 0.541), age (p = 0.585) and type of surgery (p = 0.172). Nineteen patients presented complications during the trial (4 in the PSV manual group and 15 in the MRV automatic group, p < 0.05). Nine patients in the automatic group did not adapt to the MRV mode. The mean +/- sd (standard deviation) duration of the weaning process was 221 +/- 192 for the manual group, and 271 +/- 369 minutes for the automatic group (p = 0.375). PSV levels were significantly higher in MRV compared with that of the PSV manual reduction (p < 0.05). Reintubation was not required in either group. Non-invasive ventilation was necessary for two patients, in the manual group after cardiac surgery (p = 0.51). Conclusions The duration of the automatic reduction of pressure support was similar to the manual one in the postoperative period in the ICU, but presented more complications, especially no adaptation to the MRV algorithm. Trial Registration Trial registration number: ISRCTN37456640

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to evaluate the effects of non-surgical treatment of periodontal disease during the second trimester of gestation on adverse pregnancy outcomes. MATERIAL AND METHODS: Pregnant patients during the 1st and 2nd trimesters at antenatal care in a Public Health Center were divided into 2 groups: NIG - "no intervention" (n=17) or IG- "intervention" (n=16). IG patients were submitted to a non-surgical periodontal treatment performed by a single periodontist consisting of scaling and root planning (SRP), professional prophylaxis (PROPH) and oral hygiene instruction (OHI). NIG received PROPH and OHI during pregnancy and were referred for treatment after delivery. Periodontal evaluation was performed by a single trained examiner, blinded to periodontal treatment, according to probing depth (PD), clinical attachment level (CAL), plaque index (PI) and sulcular bleeding index (SBI) at baseline and 35 gestational weeks-28 days post-partum. Primary adverse pregnancy outcomes were preterm birth (<37 weeks), low birth weight (<2.5 kg), late abortion (14-24 weeks) or abortion (<14 weeks). The results obtained were statistically evaluated according to OR, unpaired t test and paired t test at 5% signifcance level. RESULTS: No signifcant differences were observed between groups at baseline examination. Periodontal treatment resulted in stabilization of CAL and PI (p>0.05) at IG and worsening of all periodontal parameters at NIG (p<0.0001), except for PI. Signifcant differences in periodontal conditions of IG and NIG were observed at 2nd examination (p<0.001). The rate of adverse pregnancy outcomes was 47.05% in NIG and 6.25% in IG. Periodontal treatment during pregnancy was associated to a decreased risk of developing adverse pregnancy outcomes [OR=13.50; CI: 1.47-123.45; p=0.02]. CONCLUSIONS: Periodontal treatment during the second trimester of gestation contributes to decrease adverse pregnancy outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the efficacy of a 0.05% clobetasol propionate ointment administered in trays to 22 patients with desquamative gingivitis in a double-blind, crossover, placebo-controlled trial. Patients received container number 1 and were instructed to apply the ointment 3 times a day for 2 weeks, and to reduce the application to once a day in the third week. Next, the patients were then instructed to discontinue the treatment for 2 weeks, and were then given container 2, used in the same way and for the same length of time as container 1. Regarding signs, 17 patients presented some improvement, while 5 experienced worsening with clobetasol propionate. With the placebo, 14 patients presented some improvement, and 8 patients presented worsening. For symptoms, there was complete improvement in 2 patients, partial improvement in 12, no response in 7, and worsening in 1 with clobetasol propionate. With the placebo, there was partial improvement in 8 patients, no response in 12 and worsening in 2. No statistically significant difference was found between clobetasol and placebo (p>0.05). Within the period designed to treat the gingival lesions of the patients, clobetasol propionate did not significantly outperform the placebo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to clarify the degree of influence of anesthetic agents commonly used during anesthesia on the heart conduction systems of geriatric dogs, with or without the presence of electrocardiographic changes in the pre-anesthetic electrocardiogram and also to determine the possible causes of ST-segment and T-wave changes during anesthesia, by monitoring ventilation and oxygenation. 36 geriatric dogs were evaluated. In addition to electrocardiographic evaluation, the pre-anesthetic study included serum levels of urea, creatinine, total protein, albumin and electrolytes. The pre-anesthetic medication consisted of acepromazine (0.05mg kg-1) in association with meperidine (3.0mg kg-1) by IM injection. Anesthesia was induced with propofol (3.0 to 5.0mg kg-1) by IV injection and maintained with isoflurane in 100% oxygen. During the anesthesia, the animals were monitored by continued computerized electrocardiogram. Systemic blood pressure, heart rate, respiratory rate, end-tidal carbon dioxide, partial pressure of carbon dioxide in arterial blood, arterial oxygen saturation, partial pressure of arterial oxygen and oxygen saturation of hemoglobin were closely monitored. During maintenance anesthesia, normal sinus rhythm was more common (78%). ST-segment and T-wave changes during the anesthetic procedure were quite common and were related to hypoventilation. The use of isoflurane did not result in arrhythmia, being therefore a good choice for this type of animal; Electrocardiographic findings of ST-segment and T-wave changes during the maintenance anesthesia were evident in animals with hypercapnia, a disorder that should be promptly corrected with assisted or controlled ventilation to prevent complicated arrhythmias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study sought to assess the impact of an intervention to reduce weight and control risk factors of noncommunicable chronic diseases in overweight or obese adults who are users of primary and secondary healthcare units of the public health system of Pelotas, Brazil. We hypothesized that individuals who received an educational intervention regarding how to lose weight and prevent other noncommunicable chronic disease risk factors through nutrition would lose weight and acquire active habits during leisure time more frequently than individuals under regular care. Two hundred forty-one participants from the Nutrition Outpatient Clinic of the Medical Teaching Hospital of the Federal University of Pelotas, Brazil, aged 20 years or older and classified as overweight or obese were randomly allocated to either the intervention group (IG; n = 120) or control group (CG; n = 121). The IG received individualized nutritional care for 6 months, and the CG received individualized usual care of the health services. Intention-to-treat analyses showed that at 6 months, mean fasting glycemia and daily consumption of sweet foods and sodium were reduced, and the time spent on physical leisure activity was increased in IG. Analysis of adherence to the protocol of the study revealed that individuals from IG had lost more in body weight, waist circumference, and fasting glucose compared to the CG. Leisure time physical activity increased in IG. Individuals adhered equally to the dietetic recommendations, irrespective of the nutrition approach that was used