23 resultados para VASODILATATION

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negrão M.V, Alves CR, Alves G.B, Pereira A.C, Dias R.G, Laterza M.C, Mota G.F, Oliveira E.M, Bassaneze V, Krieger J.E, Negrão C.E, Rondon M.U.P. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene. Physiol Genomics 42A: 71-77, 2010. First published July 6, 2010; doi:10.1152/physiolgenomics.00145.2009.-Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 +/- 1 yr) and CT + CC (n = 35; age 26 +/- 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT + CC individuals (0.39 +/- 0.12 vs. 1.08 +/- 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT + CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT + CC individuals (1.05 +/- 0.18 vs. 1.59 +/- 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the beta(2)-adrenoceptor gene. Methods: A total of 162 preselected individuals were genotyped for the Glu27Gln beta(2)-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 +/- 2 years; 64 +/- 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 +/- 3 years; 65 +/- 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat. Results: The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 +/- 0.1 vs. 2.4 +/- 0.2; P = 0.27, respectively), but reduced FVC responses to mental stress (1.5 +/- 0.2 vs. 0.8 +/- 0.2 units; P = 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 +/- 0.1 vs. Gln27Gln = 2.1 +/- 0.1 units; P = 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 +/- 0.4 vs. 1.0 +/- 0.3 units; P = 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 +/- 0.4 vs. 1.2 +/- 0.4; P = 0.66, respectively). Conclusion: These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the beta(2)-adrenoceptor gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dias RG, Alves MJ, Pereira AC, Rondon MU, dos Santos MR, Krieger JE, Krieger MH, Negrao CE. Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation. Physiol Genomics 37: 99-107, 2009. First published January 21, 2009; doi:10.1152/physiolgenomics.90368.2008.-The influence of Glu298Asp endothelial nitric oxide synthase (eNOS) polymorphism in exercise-induced reflex muscle vasodilatation is unknown. We hypothesized that nonexercising forearm blood flow (FBF) responses during handgrip isometric exercise would be attenuated in individuals carrying the Asp298 allele. In addition, these responses would be mediated by reduced eNOS function and NO-mediated vasodilatation or sympathetic vasoconstriction. From 287 volunteers previously genotyped, we selected 33 healthy individuals to represent three genotypes: Glu/Glu [n = 15, age 43 +/- 3 yr, body mass index (BMI) 22.9 +/- 0.3 kg/m(2)], Glu/Asp (n = 9, age 41 +/- 3 yr, BMI 23.7 +/- 1.0 kg/m(2)), and Asp/Asp (n = 9, age 40 +/- 4 yr, BMI 23.5 +/- 0.9 kg/m(2)). Heart rate (HR), mean blood pressure (MBP), and FBF (plethysmography) were recorded for 3 min at baseline and 3 min during isometric handgrip exercise. Baseline HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among genotypes. FVC responses to exercise were significantly lower in Asp/Asp when compared with Glu/Asp and Glu/Glu (Delta = 0.07 +/- 0.14 vs. 0.64 +/- 0.20 and 0.57 +/- 0.09 units, respectively; P = 0.002). Further studies showed that intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) did not change FVC responses to exercise in Asp/Asp, but significantly reduced FVC in Glu/Glu (Delta = 0.79 +/- 0.14 vs. 0.14 +/- 0.09 units). Thus the differences between Glu/Glu and Asp/Asp were no longer observed (P = 0.62). L-NMMA + phentolamine increased similarly FVC responses to exercise in Glu/Glu and Asp/Asp (P = 0.43). MBP and muscle sympathetic nerve activity increased significant and similarly throughout experimental protocols in Glu/Glu and Asp/Asp. Individuals who are homozygous for the Asp298 allele of the eNOS enzyme have attenuated nonexercising muscle vasodilatation in response to exercise. This genotype difference is due to reduced eNOS function and NO-mediated vasodilatation, but not sympathetic vasoconstriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradykinin-potentiating peptides (BPPs) or proline-rich oligopeptides (PROs) isolated from the venom glands of Bothrops jararaca (Bj) were the first natural inhibitors of the angiotensin-converting enzyme (ACE) described. Bj-PRO-5a (< EKWAP), a member of this structurally related peptide family, was essential for the development of captopril, the first site-directed ACE inhibitor used for the treatment of human hypertension. Nowadays, more Bj-PROs have been identified with higher ACE inhibition potency compared to Bj-PRO-5a. However, despite its modest inhibitory effect of ACE inhibition, Bj-PRO-5a reveals strong bradykinin-potentiating activity, suggesting the participation of other mechanisms for this peptide. In the present study, we have shown that Bj-PRO-5a induced nitric oxide (NO) production depended on muscarinic acetylcholine receptor M1 subtype (mAchR-M1) and bradykinin B(2) receptor activation, as measured by a chemiluminescence assay using a NO analyzer. Intravital microscopy based on transillumination of mice cremaster muscle also showed that both bradykinin B(2) receptor and mAchR-M1 contributed to the vasodilatation induced by Bj-PRO-5a. Moreover, Bj-PRO-5a-mediated vasodilatation was completely blocked in the presence of a NO synthase inhibitor. The importance of this work lies in the definition of novel targets for Bj-PRO-5a in addition to ACE, the structural model for captopril development. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined forearm vasodilatation during mental challenge and exercise in 72 obese children (OC; age = 10 +/- 0.1 years) homozygous with polymorphism in the allele 27 of the beta(2)-adrenoceptors: Gln27 (n = 61) and Glu27 (n = 11). Forearm blood flow was recorded during 3 min of each using the Stroop color-word test (MS) and handgrip isometric exercise. Baseline hemodynamic and vascular measurements were similar. During the MS, peak forearm vascular conductance was significantly greater in group Glu27 (Delta = 0.35 +/- 0.4 vs. 0.12 +/- 0.1 units, respectively, p = .042). Similar results were found during exercise (Delta = 0.64 +/- 0.1 vs. 0.13 +/- 0.1 units, respectively, p = .035). Glu27 OC increased muscle vasodilatory responsiveness upon the MS and exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Subclinical hypothyroidism (SCH) has been associated with atherosclerosis, but the abnormalities in plasma lipids that can contribute to atherogenesis are not prominent. The aim of this study was to test the hypothesis that patients with normocholesterolemic, normotriglyceridemic SCH display abnormalities in plasma lipid metabolism not detected in routine laboratory tests including abnormalities in the intravascular metabolism of triglyceride-rich lipoproteins, lipid transfers to high-density lipoprotein (HDL), and paraoxonase 1 activity. The impact of levothyroxine (LT4) treatment and euthyroidism in these parameters was also tested. Methods: The study included 12 SCH women and 10 matched controls. Plasma kinetics of an artificial triglyceride-rich emulsion labeled with radioactive triglycerides and cholesteryl esters as well as in vitro transfer of four lipids from an artificial donor nanoemulsion to HDL were determined at baseline in both groups and after 4 months of euthyroidism in the SCH group. Results: Fractional clearance rates of triglycerides (SCH 0.035 +/- 0.016 min(-1), controls 0.029 +/- 0.013 min(-1), p=0.336) and cholesteryl esters (SCH 0.009 +/- 0.007 min(-1), controls 0.009 +/- 0.009 min(-1), p=0.906) were equal in SCH and controls and were unchanged by LT4 treatment and euthyroidism in patients with SCH, suggesting that lipolysis and remnant removal of triglyceride-rich lipoproteins were normal. Transfer of triglycerides to HDL (SCH 3.6 +/- 0.48%, controls 4.7 +/- 0.63%, p=0.001) and phospholipids (SCH 16.2 +/- 3.58%, controls 21.2 +/- 3.32%, p=0.004) was reduced when compared with controls. After LT4 treatment, transfers increased and achieved normal values. Transfer of free and esterified cholesterol to HDL, HDL particle size, and paraoxonase 1 activity were similar to controls and were unchanged by treatment. Conclusions: Although intravascular metabolism of triglyceride-rich lipoproteins was normal, patients with SCH showed abnormalities in HDL metabolism that were reversed by LT4 treatment and achievement of euthyroidism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segments of the canine internal mammary artery (35 mm in length) were suspended in vitro in an organ chamber containing physiological salt solution (95% O(2)/5% CO(2), pH = 7.4, 37 degrees C). Segments were individually cannulated and perfused at 5 ml/minute using a roller pump. Vasorelaxant activity of the effluent from the perfused internal mammary arteries was bioassayed by measuring the decrease in tension induced by the effluent of the coronary artery endothelium-free ring which had been contracted with prostaglandin F(2 alpha) (2 x 10(-6) M). Intraluminal perfusion of adenosine diphosphate (10(-5) M) induced significant increase in relaxant activity in the effluent from the perfused blood vessel. However, when adenosine diphosphate (10(-5) M) was added extraluminally to the internal mammary artery, no change in relaxant activity in the effluent was noted. In contrast, acetylcholine produced significant increase in the relaxant activity on the effluent of the perfused internal mammary artery with both intraluminal and extraluminal perfusion. The intraluminal and extraluminal release of endothelium-derived relaxing factor (EDRF) by acetylcholine (10(-5) M) can be inhibited by site-specific administration of atropine (10(-5) M). These experiments indicate that certain agonists can induce the release of EDRF only by binding to intravascular receptors while other agonists can induce endothelium-dependent vasodilatation by acting on neural side receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The supraceliac aortic cross-clamping can be an option to save patients with hipovolemic shock due to abdominal trauma. However, this maneuver is associated with ischemia/reperfusion (I/R) injury strongly related to oxidative stress and reduction of nitric oxide bioavailability. Moreover, several studies demonstrated impairment in relaxation after I/R, but the time course of I/R necessary to induce vascular dysfunction is still controversial. We investigated whether 60 minutes of ischemia followed by 30 minutes of reperfusion do not change the relaxation of visceral arteries nor the plasma and renal levels of malondialdehyde (MDA) and nitrite plus nitrate (NOx). Methods: Male mongrel dogs (n = 27) were randomly allocated in one of the three groups: sham (no clamping, n = 9), ischemia (supraceliac aortic cross-clamping for 60 minutes, n = 9), and I/R (60 minutes of ischemia followed by reperfusion for 30 minutes, n = 9). Relaxation of visceral arteries (celiac trunk, renal and superior mesenteric arteries) was studied in organ chambers. MDA and NOx concentrations were determined using a commercially available kit and an ozone-based chemiluminescence assay, respectively. Results: Both acetylcholine and calcium ionophore caused relaxation in endothelium-intact rings and no statistical differences were observed among the three groups. Sodium nitroprusside promoted relaxation in endothelium-denuded rings, and there were no inter-group statistical differences. Both plasma and renal concentrations of MDA and NOx showed no significant difference among the groups. Conclusion: Supraceliac aortic cross-clamping for 60 minutes alone and followed by 30 minutes of reperfusion did not impair relaxation of canine visceral arteries nor evoke biochemical alterations in plasma or renal tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SILVA, B. M., F. J. NEVES, M. V. NEGRÃO, C. R. ALVES, R. G. DIAS, G. B. ALVES, A. C. PEREIRA, M. Urbana A. RONDON, J. E. KRIEGER, C. E. NEGRÃO, and A. C. DA NOBREGA. Endothelial Nitric Oxide Synthase Polymorphisms and Adaptation of Parasympathetic Modulation to Exercise Training. Med. Sci. Sports Exerc., Vol. 43, No. 9, pp. 1611-1618, 2011. Purpose: There is a large interindividual variation in the parasympathetic adaptation induced by aerobic exercise training, which may be partially attributed to genetic polymorphisms. Therefore, we investigated the association among three polymorphisms in the endothelial nitric oxide gene (-786T>C, 4b4a, and 894G>T), analyzed individually and as haplotypes, and the parasympathetic adaptation induced by exercise training. Methods: Eighty healthy males, age 20-35 yr, were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis, and haplotypes were inferred using the software PHASE 2.1. Autonomic modulation (i.e., HR variability and spontaneous baroreflex sensitivity) and peak oxygen consumption ((V) over dotO(2peak)) were measured before and after training (running, moderate to severe intensity, three times per week, 60 min.day(-1), during 18 wk). Results: Training increased (V) over dotO(2peak) (P < 0.05) and decreased mean arterial pressure (P < 0.05) in the whole sample. Subjects with the -786C polymorphic allele had a significant reduction in baroreflex sensitivity after training (change: wild type (-786TT) = 2% +/- 89% vs polymorphic (-786TC/CC) = -28% +/- 60%, median +/- quartile range, P = 0.03), and parasympathetic modulation was marginally reduced in subjects with the 894T polymorphic allele (change: wild type (894GG) = 8% +/- 67% vs polymorphic (894GT/TT) = -18% +/- 59%, median +/- quartile range, P = 0.06). Furthermore, parasympathetic modulation percent change was different between the haplotypes containing wild-type alleles(-786T/4b/894G) and polymorphic alleles at positions -786 and 894 (-786C/4b/894T) (-6% +/- 56% vs -41% +/- 50%, median T quartile range, P = 0.04). Conclusions: The polymorphic allele at position -786 and the haplotype containing polymorphic alleles at positions -786 and 894 in the endothelial nitric oxide gene were associated with decreased parasympathetic modulation after exercise training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baroreflex sensitivity is disturbed in many people with cardiovascular diseases such as hypertension. Brain deficiency of nitric oxide (NO), which is synthesized by NO synthase (NOS) in the citrulline-NO cycle (with argininosuccinate synthase (ASS) activity being the rate-limiting step), contributes to impaired baroreflex. We recently showed that a decapeptide isolated from Bothrops jararaca snake venom, denoted Bj-PRO-10c, exerts powerful and sustained antihypertensive activity. Bj-PRO-10c promoted vasodilatation dependent on the positive modulation of ASS activity and NO production in the endothelium, and also acted on the central nervous system, inducing the release of GABA and glutamate, two important neurotransmitters in the regulation of autonomic systems. We evaluated baroreflex function using the regression line obtained by the best-fit points of measured heart rate (HR) and mean arterial pressure (MAP) data from spontaneously hypertensive rats (SHRs) treated with Bj-PRO-10c. We also investigated molecular mechanisms involved in this effect, both in vitro and in vivo. Bj-PRO-10c mediated an increase in baroreflex sensitivity and a decrease in MAP and HR. The effects exerted by the peptide include an increase in the gene expression of endothelial NOS and ASS. Bj-PRO-10c-induced NO production depended on intracellular calcium fluxes and the activation of a G(i/o)-protein-coupled metabotropic receptor. Bj-PRO-10c induced NO production and the gene expression of ASS and endothelial NOS in the brains of SHRs, thereby improving baroreflex sensitivity. Bj-PRO-10c may reveal novel approaches for treating diseases with impaired baroreflex function. Hypertension Research (2010) 33, 1283-1288; doi: 10.1038/hr.2010.208

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NUNES ALVES, M. J. N., M. R. DOS SANTOS, R. G. DIAS, C. A. AKIHO, M. C. LATERZA, M. U. P. B. RONDON, R. L. DE MORAES MOREAU, and C. E. NEGRAO. Abnormal Neurovascular Control in Anabolic Androgenic Steroids Users. Med. Sci. Sports Exerc., Vol. 42, No. 5, pp. 865-871, 2010. Purpose: Previous studies showed that anabolic androgenic steroids (AAS) increase vascular resistance and blood pressure (BP) in humans. In this study, we tested the hypotheses 1) that AAS users would have increased muscle sympathetic nerve activity (MSNA) and reduced forearm blood flow (FBF) compared with AAS nonusers and 2) that there would be an association between MSNA and 24-h BP. Methods: Twelve AAS users aged 31 +/- 2 yr (means +/- SE) and nine age-matched AAS nonusers aged 29 T 2 yr participated in the study. All individuals were involved in strength training for at least 2 yr. AAS was determined by urine test (chromatography-mass spectrometry). MSNA was directly measured by microneurography technique. FBF was measured by venous occlusion plethysmography. BP monitoring consisted of measures of BP for 24 h. Results: MSNA was significantly higher in AAS users than that in AAS nonusers (29 +/- 3 vs 20 +/- 1 bursts per minute, P = 0.01). FBF (1.92 +/- 0.17 vs 2.77 +/- 0.24 mL.min(-1).100 mL(-1), P = 0.01) and forearm vascular conductance (2.01 +/- 0.17 vs 2.86 +/- 0.31 U, P = 0.02) were significantly lower in AAS users than that in AAS nonusers. Systolic (131 +/- 4 vs 120 +/- 3 mm Hg, P = 0.001), diastolic (74 +/- 4 vs 68 +/- 3 mm Hg, P = 0.02), and mean BP (93 +/- 4 vs 86 +/- 3 mm Hg, P = 0.005) and heart rate (74 +/- 3 vs 68 +/- 3 bpm, P = 0.02) were significantly higher in AAS users when compared with AAS nonusers. Further analysis showed that there was a significant correlation between MSNA and 24-h mean BP (r = 0.75, P = 0.002). Conclusions: AAS increases MSNA and reduces muscle blood flow in young individuals. In addition, the increase in BP levels in AAS users is associated with augmented sympathetic outflow. These findings suggest that AAS increases the susceptibility for cardiovascular disease in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) plays an important role in the control of the vascular tone and the most often employed NO donors have limitations due to their harmful side-effects. In this context, new NO donors have been prepared, in order to minimize such undesirable effects. cis-[Ru(bpy)(2)(py)NO(2)](PF(6)) (RuBPY) is a new nitrite complex synthesized in our laboratory that releases NO in the presence of the vascular tissue only. In this work the vasorelaxation induced by this NO donor has been studied and compared to that obtained with the well known NO donor SNP. The relaxation induced by RuBPY is concentration-dependent in denuded rat aortas pre-contracted with phenylephrine (EC(50)). This new compound induced relaxation with efficacy similar to that of SNP, although its potency is lower. The time elapsed until maximum relaxation is achieved (E(max) = 240 s) is similar to measured for SNP (210 s). Vascular reactivity experiments demonstrated that aortic relaxation by RuBPY is inhibited by the soluble guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiozolo[4,3-a]quinoxaline-1-one (ODQ 1 mu M). In a similar way, 1 mu M ODQ also reduces NO release from the complex as measured with DAF-2 DA by confocal microscopy. These findings suggest that this new complex RuBPY that has nitrite in its structure releases NO inside the vascular smooth muscle cell. This ruthenium complex releases significant amounts of NO only in the presence of the aortic tissue. Reduction of nitrite to NO is most probably dependent on the soluble guanylyl-cyclase enzyme, since NO release is inhibited by ODQ. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide has been pointed out as the main agent involved in the vasodilatation, which is the major symptom of septic shock. However, there must be another mediator contributing to the circulatory failure observed in sepsis. This study aimed to investigate the endothelium-dependent relaxation induced by acetylcholine and the factors involved in this relaxation, using aortic rings isolated from rats submitted to cecal ligation and perforation (CLP), 2 h after induction of sepsis, which characterizes the hyperdynamic phase of sepsis. Under inhibition of constitutive NO-synthases (cNOS), the relaxation induced by acetylcholine was greater in the aortic rings of rats submitted to CLP compared with sham-operated rat aortic rings. The cyclooxygenase inhibitor indomethacin normalized this response, and the concentration of the stable metabolite of prostacyclin in the aorta of CLP rats increased in basal conditions and after stimulation with acetylcholine. Acetylcholine-induced NO production was lower in the endothelial cells from the aorta of CLP rats compared with sham rat aorta, but the protein expression of the cNOS was not altered. Moreover, iNOS protein expression could not be detected. Therefore, prostacyclin, and not only nitric oxide, is a mediator of the vasorelaxation induced by acetylcholine in aortas from rats submitted to CLP. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the therapeutic potential of venom peptides have significantly advanced the development of new peptide drugs. A good example is captopril, a synthetic peptide drug, which acts as an anti-hypertensive and potentiating bradykinin, inhibiting the angiotensin-converting enzyme, whose precursor was isolated from the venom of Bothrops jararacussu. The natriuretic peptide (NPs) family comprises three members, ANP (atrial natriuretic peptide), BNP (B-type natriuretic peptide) and CNP (C-type natriuretic peptide), and has an important role in blood pressure regulation and electrolyte homeostasis. In this study, we describe, for the first time, the isolation and characterization of a novel natriuretic-like peptide (Coa_NP), isolated from Crotalus Oreganus abyssus venom. The peptide has 32 amino acids and its complete sequence is SKRLSNGCFGLKLDRIGAMSGLGCWRLINESK. The Coa_NP has an average molecular mass of 3510.98 Da and its amino acid sequence presents the loop region that is characteristic of natriuretic peptides (17 amino acids, NP domain consensus; CFGXXXDRIXXXSGLGC). Coa_NP is a natriuretic peptide of the ANP/BNP-like family, since the carboxy terminal region of CNP has its own NP domain. The functional experiments showed that Coa_NP produced biological effects similar to those of the other natriuretic peptides: (1) a dose-dependent decrease in mean arterial pressure; (2) significant increases in plasma nitrite levels, and (3) vasorelaxation in thoracic aortic rings that were pre-contracted with phenylephrine. The structural and biological aspects confirm Coa_NP as a natriuretic peptide isolated from snake venom, thus expanding the diversification of venom components.