2 resultados para United States. Veterans Administration. Office of Contruction.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A warning system for sooty blotch and flyspeck (SBFS) of apple, developed in the southeastern United States, uses cumulative hours of leaf wetness duration (LWD) to predict the timing of the first appearance of signs. In the Upper Midwest United States, however, this warning system has resulted in sporadic disease control failures. The purpose of the present study was to determine whether the warning system`s algorithm could be modified to provide more reliable assessment of SBFS risk. Hourly LWD, rainfall, relative humidity (RH), and temperature data were collected from orchards in Iowa, North Carolina, and Wisconsin in 2005 and 2006. Timing of the first appearance of SBFS signs was determined by weekly scouting. Preliminary analysis using scatterplots and boxplots suggested that Cumulative hours of RH >= 97% could be a useful predictor of SBFS appearance. Receiver operating characteristic curve analysis was used to compare the predictive performance of cumulative LWD and cumulative hours of RH >= 97%. Cumulative hours of RH >= 97% was a more conservative and accurate predictor than cumulative LWD for 15 site years in the Upper Midwest, but not for four site years in North Carolina. Performance of the SBFS warning system in the Upper Midwest and climatically similar regions may be improved if cumulative hours of RH >= 97% were substituted for cumulative LWD to predict the first appearance of SBFS.
Resumo:
Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.