2 resultados para United States. National Oceanic and Atmospheric Administration
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3 degrees C km(-1) at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08 degrees C m(-1) at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal advections in the MABL that lead to different pressure intensification patterns across the confluence.
Resumo:
Members of Parasabella minuta Treadwell, 1941, subsequently moved to Perkinsiana, were collected during a survey of rocky intertidal polychaetes along the state of Sao Paulo, Brazil. Additional specimens, which are referred to two new species, were also found in similar habitats from the Bocas del Toro Archipelago, Caribbean Panama, and Oahu Island, Hawaii. A phylogenetic analysis of Sabellinae, including members of P. minuta and the two new species, provided justification for establishing a new generic hypothesis, Sabellomma gen. nov., for these individuals. Formal definitions are also provided for Sabellomma minuta gen. nov., comb. nov., S. collinae gen. nov., spec. nov., and S. harrisae gen. nov., spec. nov., along with descriptions of individuals to which these hypotheses apply. The generic name Aracia nom. nov., is provided to replace Kirkia Nogueira, Lopez and Rossi, 2004, pre-occupied by a mollusk.