2 resultados para United States. General Accounting Office. Office of the General Counsel
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The honey bee disease American foulbrood (AFB) is a serious problem since its causative agent (Paenibacillus larvae) has become increasingly resistant to conventional antibiotics. The objective of this study was to investigate the in vitro activity of propolis collected from various states of Brazil against P. larvae. Propolis is derived from plant resins collected by honey bees (Apis mellifera) and is globally known for its antimicrobial properties and particularly valued in tropical regions. Tests on the activity of propolis against P. larvae were conducted both in Brazil and Minnesota, USA using two resistance assay methods that measured zones of growth inhibition due to treatment exposure. The propolis extracts from the various states of Brazil showed significant inhibition of P. larvae. Clear dose responses were found for individual propolis extracts, particularly between the concentrations of 1.7 and 0.12 mg propolis/treatment disk, but the source of the propolis, rather than the concentration, may be more influential in determining overall activity. Two of the three tested antibiotics (tylosin and terramycin) exhibited a greater level of inhibition compared to most of the Brazilian samples, which could be due to the low concentrations of active compounds present in the propolis extracts. Additionally, the majority of the Brazilian propolis samples were more effective than the few collected in MN, USA. Due to the evolution of resistance of P. larvae to conventional antibiotic treatments, this research is an important first step in identifying possible new active compounds to treat AFB in honey bee colonies. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Previously known only from the southern United States, hosta petiole rot recently appeared in the northern United States. Sclerotium rolfsii var. delphinii is believed to be the predominant petiole rot pathogen in the northern United States, whereas S. rolfsii is most prevalent in the southern United States. In order to test the hypothesis that different tolerance to climate extremes affects the geographic distribution of these fungi, the survival of S. rolfsii and S. rolfsii var. delphinii in the northern and southeastern United States was investigated. At each of four locations, nylon screen bags containing sclerotia were placed on the surface of bare soil and at 20-cm depth. Sclerotia were recovered six times from November 2005 to July 2006 in North Dakota and Iowa, and from December 2005 to August 2006 in North Carolina and Georgia. Survival was estimated by quantifying percentage of sclerotium survival on carrot agar. Sclerotia of S. rolfsii var. delphinii survived until at least late July in all four states. In contrast, no S. rolfsii sclerotia survived until June in North Dakota or Iowa, whereas 18.5% survived until August in North Carolina and 10.3% survived in Georgia. The results suggest that inability to tolerate low temperature extremes limits the northern range of S. rolfsii.