1 resultado para Tuning.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (26)
- Boston University Digital Common (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (18)
- Cambridge University Engineering Department Publications Database (68)
- CentAUR: Central Archive University of Reading - UK (33)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (202)
- Cochin University of Science & Technology (CUSAT), India (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (11)
- CUNY Academic Works (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (3)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Helda - Digital Repository of University of Helsinki (16)
- Indian Institute of Science - Bangalore - Índia (180)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (10)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (106)
- Queensland University of Technology - ePrints Archive (109)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (9)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (13)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (9)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (7)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
Resumo:
Support vector machines (SVMs) were originally formulated for the solution of binary classification problems. In multiclass problems, a decomposition approach is often employed, in which the multiclass problem is divided into multiple binary subproblems, whose results are combined. Generally, the performance of SVM classifiers is affected by the selection of values for their parameters. This paper investigates the use of genetic algorithms (GAs) to tune the parameters of the binary SVMs in common multiclass decompositions. The developed GA may search for a set of parameter values common to all binary classifiers or for differentiated values for each binary classifier. (C) 2008 Elsevier B.V. All rights reserved.