4 resultados para Tropospheric Biennial Oscillation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The mechanisms resulting in large daily rainfall events in Northeast Brazil are analyzed using data filtering to exclude periods longer than 30 days. Composites of circulation fields that include all independent events do not reveal any obvious forcing mechanisms as multiple patterns contribute to Northeast Brazil precipitation variability. To isolate coherent patterns, subsets of events are selected based on anomalies that precede the Northeast Brazil precipitation events at different locations. The results indicate that at 10 degrees S, 40 degrees W, the area of lowest annual rainfall in Brazil, precipitation occurs mainly in association with trailing midlatitude synoptic wave trains originating in either hemisphere. Closer to the equator at 5 degrees S, 37.5 degrees W, an additional convection precursor is found to the west, with a spatial structure consistent with that of a Kelvin wave. Although these two sites are located within only several hundred kilometers of each other and the midlatitude patterns that induce precipitation appear to be quite similar, the dates on which large precipitation anomalies occur at each location are almost entirely independent, pointing to separate forcing mechanisms.
Resumo:
The Madden-Julian oscillation (MJO) is the most prominent form of tropical intraseasonal variability. This study investigated the following questions. Do inter-annual-to-decadal variations in tropical sea surface temperature (SST) lead to substantial changes in MJO activity? Was there a change in the MJO in the 1970s? Can this change be associated to SST anomalies? What was the level of MJO activity in the pre-reanalysis era? These questions were investigated with a stochastic model of the MJO. Reanalysis data (1948-2008) were used to develop a nine-state first order Markov model capable to simulate the non-stationarity of the MJO. The model is driven by observed SST anomalies and a large ensemble of simulations was performed to infer the activity of the MJO in the instrumental period (1880-2008). The model is capable to reproduce the activity of the MJO during the reanalysis period. The simulations indicate that the MJO exhibited a regime of near normal activity in 1948-1972 (3.4 events year(-1)) and two regimes of high activity in 1973-1989 (3.9 events) and 1990-2008 (4.6 events). Stochastic simulations indicate decadal shifts with near normal levels in 1880-1895 (3.4 events), low activity in 1896 1917 (2.6 events) and a return to near normal levels during 1918-1947 (3.3 events). The results also point out to significant decadal changes in probabilities of very active years (5 or more MJO events): 0.214 (1880-1895), 0.076 (1896-1917), 0.197 (1918-1947) and 0.193 (1948-1972). After a change in behavior in the 1970s, this probability has increased to 0.329 (1973-1989) and 0.510 (1990-2008). The observational and stochastic simulations presented here call attention to the need to further understand the variability of the MJO on a wide range of time scales.
Resumo:
The South American low level jet (SALLJ) of the Eastern Andes is investigated with Regional Climate Model version 3 (RegCM3) simulations during the 2002-2003 austral summer using two convective parameterizations (Grell and Emanuel). The simulated SALLJ is compared with the special observations of SALLJEX (SALLJ Experiment). Both the Grell and Emanuel schemes adequately simulate the low level flow over South America. However, there are some intensity differences. Due to the larger (smaller) convective activity, the Emanuel (Grell) scheme simulates more intense (weaker) low level wind than analysis in the tropics and subtropics. The objectives criteria of Sugahara (SJ) and Bonner (BJ) were used for LLJ identification. When applied to the observations, both criteria suggest a larger frequency of the SALLJ in Santa Cruz, followed by Mariscal, Trinidad and Asuncin. In Mariscal and Asuncin, the diurnal cycle indicates that SJ occurs mainly at 12 UTCs (morning), while the BJ criterion presents the SALLJ as more homogenously distributed. The concentration into two of the four-times-a-day observations does not allow conclusions about the diurnal cycle in Santa Cruz and Trinidad. The simulated wind profiles result in a lower than observed frequency of SALLJ using both the SJ and BJ criteria, with fewer events obtained with the BJ. Due to the stronger simulated winds, the Emanuel scheme produces an equal or greater relative frequency of SALLJ than the Grell scheme. However, the Grell scheme using the SJ criterion simulates the SALLJ diurnal cycle closer to the observed one. Although some discrepancies between observed and simulated mean vertical profiles of the horizontal wind are noted, there is large agreement between the composites of the vertical structure of the SALLJ, especially when the SJ criterion is used with the Grell scheme. On an intraseasonal scale, a larger southward displacement of SALLJ in February and December when compared with January has been noted. The Grell and Emanuel schemes simulated this observed oscillation in the low-level flow. However, the spatial pattern and intensity of rainfall and circulation anomalies simulated by the Grell scheme are closer to the analyses than those obtained with the Emanuel scheme.
Resumo:
We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.