12 resultados para Tropical woods
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Community-acquired pneumonia (CAP) is a common cause of morbidity among children. Evidence on seasonality, especially on the frequency of viral and bacterial causative agents is scarce; such information may be useful in an era of changing climate conditions worldwide. To analyze the frequency of distinct infections, meteorological indicators and seasons in children hospitalized for CAP in Salvador, Brazil, nasopharyngeal aspirate and blood were collected from 184 patients aged < 5 y over a 21-month period. Fourteen microbes were investigated and 144 (78%) cases had the aetiology established. Significant differences were found in air temperature between spring and summer (p = 0.02) or winter (p < 0.001), summer and fall (p = 0.007) or winter (p < 0.001), fall and winter (p = 0.002), and on precipitation between spring and fall (p = 0.01). Correlations were found between: overall viral infections and relative humidity (p = 0.006; r = 0.6) or precipitation (p = 0.03; r = 0.5), parainfluenza and precipitation (p = 0.02; r = -0.5), respiratory syncytial virus (RSV) and air temperature (p = 0.048; r = -0.4) or precipitation (p = 0.045; r = 0.4), adenovirus and precipitation (p = 0.02; r = 0.5), pneumococcus and air temperature (p = 0.04; r = -0.4), and Chlamydia trachomatis and relative humidity (p = 0.02; r = -0.5). The frequency of parainfluenza infection was highest during spring (32.1%; p = 0.005) and that of RSV infection was highest in the fall (36.4%; p < 0.001). Correlations at regular strength were found between several microbes and meteorological indicators. Parainfluenza and RSV presented marked seasonal patterns.
Resumo:
Background Limited information is available on the role of human metapneumovirus (HMPV) as the unique pathogen among children hospitalized for community-acquired pneumonia (CAP) in a tropical region. Objective We aimed to describe HMPV infection among children with CAP investigating bacterial and viral co-infections. Patients and methods A prospective study was carried out in Salvador, North-East Brazil. Overall, 268 children aged <5 years hospitalized for CAP were enrolled. Human metapneumovirus RNA was detected in nasopharyngeal aspirates (NPA) by reverse transcription polymerase chain reaction. Sixteen other bacterial and viral pathogens were investigated by an expanded panel of laboratory methods. Chest X-ray taken on admission was read by an independent paediatric radiologist unaware of clinical information or the established aetiology. Results Human metapneumovirus RNA was detected in NPAs of 11 (4.1%) children, of which 4 (36%) had sole HMPV infection. The disease was significantly shorter among patients with sole HMPV infection in comparison with patients with mixed infection (4 +/- 1 versus 7 +/- 2 days, P = 0.03). Three of those four patients had alveolar infiltrates. Conclusion Sole HMPV infection was detected in children with CAP in Salvador, North-East Brazil. HMPV may play a role in the childhood CAP burden.
Resumo:
This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (r = 0.63 for both) and VT (r = 0.64 and 0.63, respectively). Positive and very high correlations were observed among AT, VT and TT (from 0.94 to 0.97) indicating good association of temperatures measured in these anatomical sites. Correlations of BST with AT and VT were positive and very similar (0.71 and 0.72, respectively) and lower with TT (0.66). The AT, TT, VT and BST presented similar patterns and follow the variations of DBT through the day. Temperatures measured at different anatomical sites of the animal body have the potential to be used as indicative of the thermal stress in lactating dairy cows.
Resumo:
This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.
Resumo:
This study analyzes evapotranspiration data for three wet and two seasonally dry rain forest sites in Amazonia. The main environmental (net radiation, vapor pressure deficit, and aerodynamic conductance) and vegetation (surface conductance) controls of evapotranspiration are also assessed. Our research supports earlier studies that demonstrate that evapotranspiration in the dry season is higher than that in the wet season and that surface net radiation is the main controller of evapotranspiration in wet equatorial sites. However, our analyses also indicate that there are different factors controlling the seasonality of evapotranspiration in wet equatorial rain forest sites and southern seasonally dry rain forests. While the seasonality of evapotranspiration in wet equatorial forests is driven solely by environmental factors, in seasonally dry forests, it is also biotically controlled with the surface conductance varying between seasons by a factor of approximately 2. The identification of these different drivers of evapotranspiration is a major step forward in our understanding of the water dynamics of tropical forests and has significant implications for the future development of vegetation-atmosphere models and land use and conservation planning in the region.
Resumo:
In this work, a new theoretical mechanism is presented in which equatorial Rossby and inertio-gravity wave modes may interact with each other through resonance with the diurnal cycle of tropical deep convection. We have adopted the two-layer incompressible equatorial primitive equations forced by a parametric heating that roughly represents deep convection activity in the tropical atmosphere. The heat source was parametrized in the simplest way according to the hypothesis that it is proportional to the lower-troposphere moisture convergence, with the background moisture state function mimicking the structure of the ITCZ. In this context, we have investigated the possibility of resonant interaction between equatorially trapped Rossby and inertio-gravity modes through the diurnal cycle of the background moisture state function. The reduced dynamics of a single resonant duo shows that when this diurnal variation is considered, a Rossby wave mode can undergo significant amplitude modulations when interacting with an inertio-gravity wave mode, which is not possible in the context of the resonant triad non-linear interaction. Therefore, the results suggest that the diurnal variation of the ITCZ can be a possible dynamical mechanism that leads the Rossby waves to be significantly affected by high frequency modes.
Resumo:
This work describes the tropical town energy budget (t-TEB) scheme addressed to simulate the diurnal occurrence of the urban heat island (UHI) as observed in the Metropolitan Area of Rio de Janeiro (MARJ; -22A degrees S; -44A degrees W) in Brazil. Reasoning about the tropical urban climate have guided the scheme implementation, starting from the original equations from Masson (Bound-Lay Meteorol 94:357-397, 2000). The modifications include (a) local scaling approaches for obtaining flux-gradient relationships in the roughness sub-layer, (b) the Monin-Obukhov similarity framework in the inertial sub-layer, (c) increasing aerodynamic conductance toward more unstable conditions, and (d) a modified urban subsurface drainage system to transfer the intercepted rainwater by roofs to the roads. Simulations along 2007 for the MARJ are obtained and compared with the climatology. The t-TEB simulation is consistent with the observations, suggesting that the timing and dynamics of the UHI in tropical cities could vary significantly from the familiar patterns observed in mid-latitude cities-with the peak heat island intensity occurring in the morning than at night. The simulations are suggesting that the thermal phase shift of this tropical diurnal UHI is a response of the surface energy budget to the large amount of solar radiation, intense evapotranspiration, and thermal response of the vegetated surfaces over a very humid soil layer.
Resumo:
In this study, observations and numerical simulations are used to investigate how different El Nino events affect the development of SST anomalies in the Atlantic and how this relates to the Brazilian northeast (NE) precipitation. The results show that different types of El Nino have different impacts on the SST anomalies of the equatorial and tropical South Atlantic but a similar SST response in the tropical North Atlantic. Strong and long (weak and short) El Ninos with the main heating source located in the eastern (central) Pacific generate cold (warm) anomalies in the cold tongue and Benguela upwelling regions during boreal winter and spring. When the SST anomalies in the eastern equatorial and tropical South Atlantic are cold (warm), the meridional SST gradient across the equator is positive (negative) and the ITCZ is not allowed (allowed) to move southward during the boreal spring; as a consequence, the precipitation is below (above) the average over the NE. Thus, strong and long (weak and short) El Ninos are followed by dry (wet) conditions in the NE. During strong and long El Ninos, changes in the Walker circulation over the Atlantic and in the Pacific-South Atlantic (PSA) wave train cause easterly wind anomalies in the western equatorial Atlantic, which in turn activate the Bjerknes mechanism, establishing the cold tongue in boreal spring and summer. These easterly anomalies are also responsible for the Benguela upwelling. During short and weak El Ninos, westerly wind anomalies are present in the western equatorial Atlantic accompanied by warm anomalies in the eastern equatorial and tropical South Atlantic; a positive phase of the South Atlantic dipole develops during boreal winter. The simulations highlight the importance of ocean dynamics in establishing the correct slope of the equatorial thermocline and SST anomalies, which in turn determine the correct rainfall response over the NE.
Resumo:
In this work, the diurnal evolution of the radiation balance components over the tropical Atlantic Ocean is described and analysed. The analysis is based on measurements carried Out on board a Brazilian Navy ship during the observational campaign of the FluTuA Project (`Fluxos Turbulentos sobre o Atlantico`), from 15 to 23 May 2002. The observations indicated that the albedo responds its expected to atmospheric attenuation effects with a diurnal evolution similar to the Fresnel albedo. In general, the observed longwave radiation values agreed better with the estimated values obtained without longwave reflection. In agreement with the literature, the average surface emissivity was around 0.97. The net radiation, estimated from published equations for albedo, atmospheric transmissivity and surface emissivity, agreed with the observations, indicating that these parameters are representative of the radiometric properties of the air-sea interface in the region between Natal (6 degrees S, 35.2 degrees W) and the Sao Pedro and Sao Paulo Archipelago (1 degrees N, 29.3 degrees W). Copyright (C) 2008 Royal Meteorological Society
Resumo:
We combined measurements of tree growth and carbon dioxide exchange to investigate the effects of selective logging on the Aboveground Live Biomass (AGLB) of a tropical rain forest in the Amazon. Most of the measurements began at least 10 months before logging and continued at least 36 months after logging. The logging removed similar to 15% of the trees with Diameter at Breast Height (DBH) greater than 35 cm, which resulted in an instantaneous 10% reduction in AGLB. Both wood production and mortality increased following logging, while Gross Primary Production (GPP) was unchanged. The ratio of wood production to GPP (the wood Carbon Use Efficiency or wood CUE) more than doubled following logging. Small trees (10 cm < DBH < 35 cm) accounted for most of the enhanced wood production. Medium trees (35 cm < DBH < 55 cm) that were within 30 m of canopy gaps created by the logging also showed increased growth. The patterns of enhanced growth are most consistent with logging-induced increases in light availability. The AGLB continued to decline over the study, as mortality outpaced wood production. Wood CUE and mortality remained elevated throughout the 3 years of postlogging measurements. The future trajectory of AGLB and the forest`s carbon balance are uncertain, and will depend on how long it takes for heterotrophic respiration, mortality, and CUE to return to prelogging levels.
Resumo:
Laurencia marilzae Gil-Rodriguez, Senties & MT Fujii is recorded for the first time for the tropical western Atlantic Ocean, occurring in Isla Mujeres, Quintana Roo, Mexican Caribbean. The specimens were collected in November 2008 and June 2009, growing epilithically in the lower intertidal zone on moderately exposed rocky shores. This species is characterized by its distinctive yellow-orange color in the natural environment, four pericentral cells per vegetative axial segment, the presence of secondary pit-connections between adjacent cortical cells, which are markedly projecting at the apices, and by the presence of one ""corp en cerise"" per cell in all cells of the thallus: cortical, medullary, including pericentral and axial cells, and trichoblasts. Morphological similarities and molecular data support the determination of this material as L. marilzae. The present study expands the geographical distribution of L. marilzae to the Caribbean Sea in the tropical Western Atlantic Ocean.
Resumo:
Knowledge on juvenile tree growth is crucial to understand how trees reach the canopy in tropical forests. However, long-term data on juvenile tree growth are usually unavailable. Annual tree rings provide growth information for the entire life of trees and their analysis has become more popular in tropical forest regions over the past decades. Nonetheless, tree ring studies mainly deal with adult rings as the annual character of juvenile rings has been questioned. We evaluated whether juvenile tree rings can be used for three Bolivian rainforest species. First, we characterized the rings of juvenile and adult trees anatomically. We then evaluated the annual nature of tree rings by a combination of three indirect methods: evaluation of synchronous growth patterns in the tree- ring series, (14)C bomb peak dating and correlations with rainfall. Our results indicate that rings of juvenile and adult trees are defined by similar ring-boundary elements. We built juvenile tree-ring chronologies and verified the ring age of several samples using (14)C bomb peak dating. We found that ring width was correlated with rainfall in all species, but in different ways. In all, the chronology, rainfall correlations and (14)C dating suggest that rings in our study species are formed annually.