7 resultados para Transnational advocacy networks, Biodiversity and CyberPolitics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 +/- A 0.09, C = 0.30 +/- A 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 +/- A 0.07, C = 0.22 +/- A 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 +/- A 0.13) than in bat-fruit networks (R = 0.54 +/- A 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.
Resumo:
In southern Bahia, Brazil, large land areas are used for the production of cocoa (Theobroma cacao), which is predominantly grown under the shade of native trees in an agroforestry system locally known as cabruca. As a dominant forest-like landscape element of the cocoa region, the cabrucas play an important role in the conservation of the region`s biodiversity. The purpose of this review is to provide the scientific basis for an action plan to reconcile cocoa production and biodiversity conservation in southern Bahia. The available research collectively highlights the diversity of responses of different species and biological groups to both the habitat quality of the cabrucas themselves and to the general characteristics of the landscape, such as the relative extent and spatial configuration of different vegetation types within the landscape mosaic. We identify factors that influence directly or indirectly the occurrence of native species in the cabrucas and the wider landscape of the cocoa region and develop recommendations for their conservation management. We show that the current scientific knowledge already provides a good basis for a biodiversity friendly management of the cocoa region of southern Bahia, although more work is needed to refine some management recommendations, especially on shade canopy composition and density, and verify their economic viability. The implementation of our recommendations should be accompanied by appropriate biological and socioeconomic monitoring and the findings should inform a broad program of adaptive management of the cabrucas and the wider cocoa landscape.
Resumo:
Changes in species composition is an important process in many ecosystems but rarely considered in systematic reserve site selection. To test the influence of temporal variability in species composition on the establishment of a reserve network, we compared network configurations based on species data of small mammals and frogs sampled during two consecutive years in a fragmented Atlantic Forest landscape (SE Brazil). Site selection with simulated annealing was carried out with the datasets of each single year and after merging the datasets of both years. Site selection resulted in remarkably divergent network configurations. Differences are reflected in both the identity of the selected fragments and in the amount of flexibility and irreplaceability in network configuration. Networks selected when data for both years were merged did not include all sites that were irreplaceable in one of the 2 years. Results of species number estimation revealed that significant changes in the composition of the species community occurred. Hence, temporal variability of community composition should be routinely tested and considered in systematic reserve site selection in dynamic systems.
Resumo:
Mutualism-network studies assume that all interacting species are mutualistic partners and consider that all links are of one kind. However, the influence of different types of links, such as cheating links, on network organization remains unexplored. We studied two flower-visitation networks (Malpighiaceae and Bignoniaceae and their flower visitors), and divide the types of link into cheaters (i.e. robbers and thieves of flower rewards) and effective pollinators. We investigated if there were topological differences among networks with and without cheaters, especially with respect to nestedness and modularity. The Malpighiaceae network was nested, but not modular, and it was dominated by pollinators and had much fewer cheater species than Bignoniaceae network (28% versus 75%). The Bignoniaceae network was mainly a plant-cheater network, being modular because of the presence of pollen robbers and showing no nestedness. In the Malpighiaceae network, removal of cheaters had no major consequences for topology. In contrast, removal of cheaters broke down the modularity of the Bignoniaceae network. As cheaters are ubiquitous in all mutualisms, the results presented here show that they have a strong impact upon network topology.
Resumo:
The Hyacinth Macaw (Anodorhynchus hyacinthinus) is one of 14 endangered species in the family Psittacidae occurring in Brazil, with an estimated total population of 6,500 specimens. We used nuclear molecular markers (single locus minisatellites and microsatellites) and 472 bp of the mitochondrial DNA control region to characterize levels of genetic variability in this species and to assess the degree of gene flow among three nesting sites in Brazil (Pantanal do Abobral, Pantanal de Miranda and Piaui). The origin of five apprehended specimens was also investigated. The results suggest that, in comparison to other species of parrots, Hyacinth Macaws possess relatively lower genetic variation and that individuals from two different localities within the Pantanal (Abobral and Miranda) belong to a unique interbreeding population and are genetically distinct at nuclear level from birds from the state of Piaui. The analyses of the five apprehended birds suggest that the Pantanal is not the source of birds for illegal trade, but their precise origin could not be assigned. The low genetic variability detected in the Hyacinth Macaw does not seem to pose a threat to the survival of this species. Nevertheless, habitat destruction and nest poaching are the most important factors negatively affecting their populations in the wild. The observed genetic structure emphasizes the need of protection of Hyacinth Macaws from different regions in order to maintain the genetic diversity of this species.
Resumo:
Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.