12 resultados para Trains -- Russie
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We propose a method for measuring hyper-Rayleigh scattering employing pulse trains produced by a Q-switched and mode-locked Nd:YAG laser. The use of the entire pulse train under the Q-switch envelope avoids the need of any device to scan the irradiance, as is usually done with nanosecond and femtosecond single-pulse lasers. To verify the feasibility of the technique, we performed measurements in different solutions of para-nitroaniline and compared the results with those obtained with nanosecond pulses. In both cases, the agreement with the hyperpolarizability values reported in the literature is about the same, but the measurements carried out with pulse trains are at least 20 times faster. Besides the advantage of acquisition speed, the use of pulse trains also allows the instantaneous inspection of slow luminescence contributions arising from multiphoton absorption. (C) 2008 Optical Society of America.
Resumo:
We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods: Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M(max) and F-waves were elicited at different times before or after the vibratory stimulation. Results: The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions: These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.
Resumo:
The mechanisms resulting in large daily rainfall events in Northeast Brazil are analyzed using data filtering to exclude periods longer than 30 days. Composites of circulation fields that include all independent events do not reveal any obvious forcing mechanisms as multiple patterns contribute to Northeast Brazil precipitation variability. To isolate coherent patterns, subsets of events are selected based on anomalies that precede the Northeast Brazil precipitation events at different locations. The results indicate that at 10 degrees S, 40 degrees W, the area of lowest annual rainfall in Brazil, precipitation occurs mainly in association with trailing midlatitude synoptic wave trains originating in either hemisphere. Closer to the equator at 5 degrees S, 37.5 degrees W, an additional convection precursor is found to the west, with a spatial structure consistent with that of a Kelvin wave. Although these two sites are located within only several hundred kilometers of each other and the midlatitude patterns that induce precipitation appear to be quite similar, the dates on which large precipitation anomalies occur at each location are almost entirely independent, pointing to separate forcing mechanisms.
Resumo:
Intraseasonal and interannual variability of extreme wet and dry anomalies over southeastern Brazil and the western subtropical South Atlantic Ocean are investigated. Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) in pentads during 23 austral summers (December-February 1979/80-2001/02). Extreme wet (dry) events are defined according to 75th (25th) percentiles of precipitation anomaly distributions observed in two time scales: intraseasonal and interannual. The agreement between the 25th and 75th percentiles of the GPCP precipitation and gridded precipitation obtained from stations in Brazil is also examined. Variations of extreme wet and dry anomalies on interannual time scales are investigated along with variations of sea surface temperature (SST) and circulation anomalies. The South Atlantic SST dipole seems related to interannual variations of extreme precipitation events over southeastern Brazil. It is shown that extreme wet and dry events in the continental portion of the South Atlantic convergence zone (SACZ) are decoupled from extremes over the oceanic portion of the SACZ and there is no coherent dipole of extreme precipitation regimes between tropics and subtropics on interannual time scales. On intraseasonal time scales, the occurrence of extreme dry and wet events depends on the propagation phase of extratropical wave trains and consequent intensification (weakening) of 200-hPa zonal winds. Extreme wet and dry events over southeastern Brazil and subtropical Atlantic are in phase on intraseasonal time scales. Extreme wet events over southeastern Brazil and subtropical Atlantic are observed in association with low-level northerly winds above the 75th percentile of the seasonal climatology over central-eastern South America. Extreme wet events on intraseasonal time scales over southeastern Brazil are more frequent during seasons not classified as extreme wet or dry on interannual time scales.
Resumo:
Convectively coupled Kelvin waves over the South American continent are examined through the use of temporal and spatial filtering of reanalysis, satellite, and gridded rainfall data. They are most prominent from November to April, the season analyzed herein. The following two types of events are isolated: those that result from preexisting Kelvin waves over the eastern Pacific Ocean propagating into the continent, and those that apparently originate over Amazonia, forced by disturbances propagating equatorward from central and southern South America. The events with precursors in the Pacific are mainly upper-level disturbances, with almost no signal at the surface. Those events with precursors over South America, on the other hand, originate as upper-level synoptic wave trains that pass over the continent and resemble the ""cold surges`` documented by Garreaud and Wallace. As the wave train propagates over the Andes, it induces a southerly low-level wind that advects cold air to the north. Precipitation associated with a cold front reaches the equator a few days later and subsequently propagates eastward with the characteristics of a Kelvin wave. The structures of those waves originating over the Pacific are quite similar to those originating over South America as they propagate to eastern South America and into the Atlantic. South America Kelvin waves that originate over neither the Pacific nor the midlatitudes of South America can also be identified. In a composite sense, these form over the eastern slope of the Andes Mountains, close to the equator. There are also cases of cold surges that reach the equator yet do not form Kelvin waves. The interannual variability of the Pacific-originating events is related to sea surface temperatures in the central-eastern Pacific Ocean. When equatorial oceanic conditions are warm, there tends to be an increase in the number of disturbances that reach South America from the Pacific.
Resumo:
In this study we investigate the effect of a single session of high-intensity contractions on expression of pleiotropic genes and, in particular, those genes associated with metabolism in soleus muscle from electrically stimulated (ES) and contralateral (CL) limbs. The right limbs of male Wistar rats were submitted to contractions by 200-ms trains of electrical stimulation at 100-Hz frequency with pulses of 0.1 ms (voltage 24 3 V) delivered each second for 1 hour. Soleus muscles were isolated 1 hour after contraction, and gene expression was analyzed by a macroarray technique (Atlas Toxicology 1.2 Array; Clontech Laboratories). Electrical stimulation increased expression in 92 genes (16% of the genes present in the membrane). Sixty-six genes were upregulated in both ES and CL soleus muscles, and expression of 26 genes was upregulated in the ES muscle only. The most altered genes were those related to stress response and metabolism. Electrical stimulation also raised expression of transcription factors, translation and posttranslational modification of proteins, ribosomal proteins, and intracellular transducers/effectors/modulators. The results indicate that a single session of electrical stimulation upregulated expression of genes related to metabolism and oxidative stress in soleus muscle from both ES and CL limbs. These findings may indicate an association with tissue hypertrophy and metabolic adaptations induced by physical exercise training not only in the ES but also in the CL non-stimulated muscle, suggesting a cross-education phenomenon. Muscle Nerve 40: 838-846, 2009
Resumo:
The relative contribution of the pre- and post-synaptic effects to the neostigmine-induced recovery of neuromuscular transmission blocked by vecuronium was studied. A conjunction of myographical and electrophysiological techniques was employed. The preparation was the sciatic nerve-extensor digitorum longus muscle of the rat, in vitro. The physiological variables recorded were nerve-evoked twitches (generated at 0.1 Hz), tetanic contractions (generated at 50 Hz) and end-plate potentials (epps), generated in trains of 50 Hz. The epps were analyzed in: amplitude of first epp in the train; mean amplitude of the 30th to the 59th epp in the train (epps-plateau); half-decay time of the epp; early tetanic rundown of epps in the train; plateau tetanic rundown of epps in the train; quantal content of the epps and quantal size. In myographical experiments, a concentration of vecuronium was found (0.8 mu m) that affected both twitches and tetanic contractions and a concentration of neostigmine was found (0.048 mu m) that completely restored the twitch affected by vecuronium. The cellular effects of vecuronium and neostigmine, studied alone or in association, in the above-mentioned concentrations, were scrutinized by means of electrophysiological techniques. These showed that vecuronium alone decreased the peak amplitude, the quantal content of epps and the quantal size and reinforced the tetanic rundown of epps. Neostigmine alone increased the peak amplitude, the quantal content and the half-decay time of the epps. When employed in the presence of vecuronium, neostigmine increased both the quantal content of the epps (via a presynaptic effect) and the half-decay time of the epps (via a postsynaptic effect). Seeing the pre- and the post-synaptic effects of neostigmine were of similar magnitude, they permit to conclude that both these effects contributed significantly to the restoration by neostigmine of the neuromuscular transmission blocked by vecuronium.
Resumo:
This work reports theoretical and experimental studies on the first hyperpolarizability (beta) of aminophenols, evaluating the influence of the NH(2) group position relative to the OH group on the hyperpolarizability. A new extension of hyper-Rayleigh scattering technique using picosecond pulse trains was employed to obtain the experimental absolute values of (beta). The theoretical static beta(0) values were calculated using AMI method implemented in the AMPAC program. The theoretical and experimental data show a clear dependence between beta and the relative position of the electron donor (D) and acceptor (A) groups, presenting the 2-aminophenol the higher values. Moreover, calculations show excellent qualitative agreement between theoretical and experimental data, which are improved when the simulations considering the solvated molecule in a combination of discrete solvent molecules interacting with the solute and the application of continuous dielectric model. Besides, the study indicates that the experimental hyperpolarizabilities seem to be a property of the solute-solvation shell system. These facts have affirmed that the theoretical approach employed can be successfully used to foresee the variation in beta due to modifications in the D/A position. Moreover, a theoretical study of the ground state absorption is performed and compared with experimental data. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.
Resumo:
A new preparation route towards rare-earth (RE) doped polycrystalline lead lanthanum zirconate titanate (PLZT) ceramics (RE = Y(3+), Nd(3+), Yb(3+)), based on the use of doped lanthanum oxide or zirconia, is reported. Structural characterization by X-ray powder diffraction reveals that secondary phase formation can be substantially diminished in comparison to conventional preparation methods. The distribution of the rare-earth dopants was investigated as a function of concentration by static (207)Pb spin echo NMR spectra, using Fourier Transformation of Carr-Purcell-Meiboom-Gill spin echo trains. For the Nd- and Yb-doped materials, the interaction of the (207)Pb nuclei with the unpaired electron spin density results in significant broadening and shifting of the NMR signal, whereas these effects are absent in the diamagnetic Y(3+) doped materials. Based on different concentration dependences of the NMR lineshape parameters, we conclude that the structural role of the Nd(3+) dopants differs significantly from that of Yb(3+). While the Nd(3+) ions appear to be statistically distributed in the PLZT lattice, incorporation of Yb(3+) into PLZT appears to be limited by the appearance of doped cubic zirconia as a secondary phase. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.