49 resultados para Traffic Estimation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm, based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining ""absolute"" and ""relative"" safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 [14], using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the ""Automatic Dependent Surveillance-Broadcasting"" (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present a computer program developed for estimating penetrance rates in autosomal dominant diseases by means of family kinship and phenotype information contained within the pedigrees. The program also determines the exact 95% credibility interval for the penetrance estimate. Both executable (PenCalc for Windows) and web versions (PenCalcWeb) of the software are available. The web version enables further calculations, such as heterozygosity probabilities and assessment of offspring risks for all individuals in the pedigrees. Both programs can be accessed and down-loaded freely at the home-page address http://www.ib.usp.br/~otto/software.htm.
Resumo:
It is well known that striation spacing may be related to the crack growth rate, da/dN, through Paris equation, as well as the maximum and minimum loads under service loading conditions. These loads define the load ratio, R, and are considered impossible to be evaluated from the inter-spacing striations analysis. In this way, this study discusses the methodology proposed by Furukawa to evaluate the maximum and minimum loads based on the experimental fact that the relative height of a striation, H, and the striation spacing, s, are strongly influenced by the load ratio, R. Fatigue tests in C(T) specimens were conducted on SAE 7475-T7351 Al alloy plates at room temperature and the results showed a straightforward correlation between the parameters H, s, and R. Measurements of striation height, H, were performed using scanning electron microscopy and field emission gun (FEG) after sectioning the specimen at a large inclined angle to amplify the height of the striations. The results showed that for increasing R the values of H/s tend to increase. Striation height, striation spacing, and load ratio correlations were obtained, which allows one to estimate service loadings from fatigue fracture surface survey.
Resumo:
The aim of this study was to compare REML/BLUP and Least Square procedures in the prediction and estimation of genetic parameters and breeding values in soybean progenies. F(2:3) and F(4:5) progenies were evaluated in the 2005/06 growing season and the F(2:4) and F(4:6) generations derived thereof were evaluated in 2006/07. These progenies were originated from two semi-early, experimental lines that differ in grain yield. The experiments were conducted in a lattice design and plots consisted of a 2 m row, spaced 0.5 m apart. The trait grain yield per plot was evaluated. It was observed that early selection is more efficient for the discrimination of the best lines from the F(4) generation onwards. No practical differences were observed between the least square and REML/BLUP procedures in the case of the models and simplifications for REML/BLUP used here.
Resumo:
BACKGROUND: Ambient levels of air pollution may affect the health of children, as indicated by studies of infant and perinatal mortality. Scientific evidence has also correlated low birth weight and preterm birth, which are important determinants of perinatal death, with air pollution. However, most of these studies used ambient concentrations measured at monitoring sites, which may not consider differential exposure to pollutants found at elevated concentrations near heavy-traffic roadways. OBJECTIVES: Our goal was to examine the association between traffic-related pollution and perinatal mortality. METHODS: We used the information collected for a case-control study conducted in 14 districts in the City of Sao Paulo, Brazil, regarding risk factors for perinatal deaths. We geocoded the residential addresses of cases (fetal and early neonatal deaths) and controls (children who survived the 28th day of life) and calculated a distance-weighted traffic density (DWTD) measure considering all roads contained in a buffer surrounding these homes. RESULTS: Logistic regression revealed a gradient of increasing risk of early neonatal death with higher exposure to traffic-related air pollution. Mothers exposed to the highest quartile of the DWTD compared with those less exposed exhibited approximately 50% increased risk (adjusted odds ratio = 1.47; 95% confidence interval, 0.67-3.19). Associations for fetal mortality were less consistent. CONCLUSIONS: These results suggest that motor vehicle exhaust exposures may be a risk factor for perinatal mortality.
Resumo:
This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM-PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [ the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h(-1) ( PR) and -0.157 mm h(-1)(S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 ( PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM-Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h(-1). NESDIS(1) overestimated for both wind regimes but presented the best westerly representation. NESDIS(2), GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.
Resumo:
The reverse engineering problem addressed in the present research consists of estimating the thicknesses and the optical constants of two thin films deposited on a transparent substrate using only transmittance data through the whole stack. No functional dispersion relation assumptions are made on the complex refractive index. Instead, minimal physical constraints are employed, as in previous works of some of the authors where only one film was considered in the retrieval algorithm. To our knowledge this is the first report on the retrieval of the optical constants and the thickness of multiple film structures using only transmittance data that does not make use of dispersion relations. The same methodology may be used if the available data correspond to normal reflectance. The software used in this work is freely available through the PUMA Project web page (http://www.ime.usp.br/similar to egbirgin/puma/). (C) 2008 Optical Society of America
Resumo:
We consider the problem of interaction neighborhood estimation from the partial observation of a finite number of realizations of a random field. We introduce a model selection rule to choose estimators of conditional probabilities among natural candidates. Our main result is an oracle inequality satisfied by the resulting estimator. We use then this selection rule in a two-step procedure to evaluate the interacting neighborhoods. The selection rule selects a small prior set of possible interacting points and a cutting step remove from this prior set the irrelevant points. We also prove that the Ising models satisfy the assumptions of the main theorems, without restrictions on the temperature, on the structure of the interacting graph or on the range of the interactions. It provides therefore a large class of applications for our results. We give a computationally efficient procedure in these models. We finally show the practical efficiency of our approach in a simulation study.
Resumo:
Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.
Resumo:
Objective. - The aim of this study was to propose a new method that allows for the estimation of critical power (CP) from non-exhaustive tests using ratings of perceived exertion (RPE). Methods. - Twenty-two subjects underwent two practice trials for ergometer and Borg 15-point scale familiarization, and adaptation to severe exhaustive exercise. After then, four exercise bouts were performed on different days for the estimation of CP and anaerobic work capacity (AWC) by linear work-time equation, and CP(15), CP(17), AWC(15) and AWC(17) were estimated using the work and time to attainment of RPE15 and RPE17 based on the Borg 15-point scale. Results. - The CP, CP(15) and CP(17) (170-177W) were not significantly different (P>0.05). However, AWC, AWC(15) and AWC(17) were all different from each other. The correlations between CP(15) and CP(17), with CP were strong (R=0.871 and 0.911, respectively), but the AWC(15) and AWC(17) were not significantly correlated with AWC. Conclusion. - Sub-maximal. RPE responses can be used for the estimation of CP from non-exhaustive exercise protocols. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.
Resumo:
We proposed a connection admission control (CAC) to monitor the traffic in a multi-rate WDM optical network. The CAC searches for the shortest path connecting source and destination nodes, assigns wavelengths with enough bandwidth to serve the requests, supervises the traffic in the most required nodes, and if needed activates a reserved wavelength to release bandwidth according to traffic demand. We used a scale-free network topology, which includes highly connected nodes ( hubs), to enhance the monitoring procedure. Numerical results obtained from computational simulations show improved network performance evaluated in terms of blocking probability.
Resumo:
This paper analyses an optical network architecture composed by an arrangement of nodes equipped with multi-granular optical cross-connects (MG-OXCs) in addition to the usual optical cross-connects (OXCs). Then, selected network nodes can perform both waveband as well as traffic grooming operations and our goal is to assess the improvement on network performance brought by these additional capabilities. Specifically, the influence of the MG-OXC multi-granularity on the blocking probability is evaluated for 16 classes of service over a network based on the NSFNet topology. A mechanism of fairness in bandwidth capacity is also added to the connection admission control to manage the blocking probabilities of all kind of bandwidth requirements. Comprehensive computational simulation are carried out to compare eight distinct node architectures, showing that an adequate combination of waveband and single-wavelength ports of the MG-OXCs and OXCs allow a more efficient operation of a WDM optical network carrying multi-rate traffic.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this study, the innovation approach is used to estimate the measurement total error associated with power system state estimation. This is required because the power system equations are very much correlated with each other and as a consequence part of the measurements errors is masked. For that purpose an index, innovation index (II), which provides the quantity of new information a measurement contains is proposed. A critical measurement is the limit case of a measurement with low II, it has a zero II index and its error is totally masked. In other words, that measurement does not bring any innovation for the gross error test. Using the II of a measurement, the masked gross error by the state estimation is recovered; then the total gross error of that measurement is composed. Instead of the classical normalised measurement residual amplitude, the corresponding normalised composed measurement residual amplitude is used in the gross error detection and identification test, but with m degrees of freedom. The gross error processing turns out to be very simple to implement, requiring only few adaptations to the existing state estimation software. The IEEE-14 bus system is used to validate the proposed gross error detection and identification test.